Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
J Mol Biol. 2015 May 22;427(10):1875-86. doi: 10.1016/j.jmb.2015.01.010. Epub 2015 Jan 28.
Rvb1 and Rvb2 are conserved AAA+ (ATPases associated with diverse cellular activities) proteins found at the core of large multicomponent complexes that play key roles in chromatin remodeling, integrity of the telomeres, ribonucleoprotein complex biogenesis and other essential cellular processes. These proteins contain an AAA+ domain for ATP binding and hydrolysis and an insertion domain proposed to bind DNA/RNA. Yeast Rvb1 and Rvb2 proteins oligomerize primarily as heterohexameric rings. The six AAA+ core domains form the body of the ring and the insertion domains protrude from one face of the ring. Conversely, human Rvbs form a mixture of hexamers and dodecamers made of two stacked hexamers interacting through the insertion domains. Human dodecamers adopt either a contracted or a stretched conformation. Here, we found that yeast Rvb1/Rvb2 complexes when assembled in vivo mainly form hexamers but they also assemble as dodecamers with a frequency lower than 10%. Yeast dodecamers adopt not only the stretched and contracted structures that have been described for human Rvb1/Rvb2 dodecamers but also intermediate conformations in between these two extreme states. The orientation of the insertion domains of Rvb1 and Rvb2 proteins in these conformers changes as the dodecamer transitions from the stretched structure to a more contracted structure. Finally, we observed that for the yeast proteins, oligomerization as a dodecamer inhibits the ATPase activity of the Rvb1/Rvb2 complex. These results indicate that although human and yeast Rvb1 and Rvb2 proteins share high degree of homology, there are significant differences in their oligomeric behavior and dynamics.
Rvb1 和 Rvb2 是保守的 AAA+(与多种细胞活动相关的 ATP 酶)蛋白,存在于大型多成分复合物的核心,在染色质重塑、端粒完整性、核糖核蛋白复合物生物发生和其他重要细胞过程中发挥关键作用。这些蛋白质含有一个用于 ATP 结合和水解的 AAA+结构域和一个插入结构域,该结构域被提议与 DNA/RNA 结合。酵母 Rvb1 和 Rvb2 蛋白主要作为异六聚体环聚合。六个 AAA+核心结构域形成环的主体,插入结构域从环的一个面突出。相反,人类 Rvbs 形成由两个堆叠的六聚体通过插入结构域相互作用形成的六聚体和十二聚体的混合物。人类十二聚体采用收缩或伸展构象。在这里,我们发现酵母 Rvb1/Rvb2 复合物在体内组装时主要形成六聚体,但它们也以低于 10%的频率组装成十二聚体。酵母十二聚体不仅采用了已描述的人类 Rvb1/Rvb2 十二聚体的伸展和收缩结构,还采用了这两种极端状态之间的中间构象。随着十二聚体从伸展结构转变为更收缩的结构,Rvb1 和 Rvb2 蛋白的插入结构域在这些构象中的取向发生变化。最后,我们观察到对于酵母蛋白,作为十二聚体的寡聚化抑制了 Rvb1/Rvb2 复合物的 ATP 酶活性。这些结果表明,尽管人类和酵母 Rvb1 和 Rvb2 蛋白具有高度同源性,但它们的寡聚行为和动力学存在显著差异。