Warnock Jennifer L, Ball Jacob A, Najmi Saman M, Henes Mina, Vazquez Amanda, Koshnevis Sohail, Wieden Hans-Joachim, Conn Graeme L, Ghalei Homa
Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA.
Graduate Program in Biochemistry, Cell & Developmental Biology (BCDB), Emory University, Atlanta, Georgia, USA.
bioRxiv. 2024 May 13:2024.05.13.593962. doi: 10.1101/2024.05.13.593962.
The evolutionarily conserved AAA ATPases Rvb1 and Rvb2 proteins form a heteromeric complex (Rvb1/2) required for assembly or remodeling of macromolecular complexes in essential cellular processes ranging from chromatin remodeling to ribosome biogenesis. Rvb1 and Rvb2 have a high degree of sequence and structural similarity, and both contain the classical features of ATPases of their clade, including an N-terminal AAA subdomain with the Walker A motif, an insertion domain that typically interacts with various binding partners, and a C-terminal AAA subdomain containing a Walker B motif, the Sensor I and II motifs, and an arginine finger. In this study, we find that despite the high degree of structural similarity, Rvb1 and Rvb2 have distinct active sites that impact their activities and regulation within the Rvb1/2 complex. Using a combination of biochemical and genetic approaches, we show that replacing the homologous arginine fingers of Rvb1 and Rvb2 with different amino acids not only has distinct effects on the catalytic activity of the complex, but also impacts cell growth, and the Rvb1/2 interactions with binding partners. Using molecular dynamics simulations, we find that changes near the active site of Rvb1 and Rvb2 cause long-range effects on the protein dynamics in the insertion domain, suggesting a molecular basis for how enzymatic activity within the catalytic site of ATP hydrolysis can be relayed to other domains of the Rvb1/2 complex to modulate its function. Further, we show the impact that the arginine finger variants have on snoRNP biogenesis and validate the findings from molecular dynamics simulations using a targeted genetic screen. Together, our results reveal new aspects of the regulation of the Rvb1/2 complex by identifying a relay of long-range molecular communication from the ATPase active site of the complex to the binding site of cofactors. Most importantly, our findings suggest that despite high similarity and cooperation within the same protein complex, the two proteins have evolved with unique properties critical for the regulation and function of the Rvb1/2 complex.
进化上保守的AAA型ATP酶Rvb1和Rvb2蛋白形成一种异源二聚体复合物(Rvb1/2),该复合物是从染色质重塑到核糖体生物合成等基本细胞过程中大分子复合物组装或重塑所必需的。Rvb1和Rvb2具有高度的序列和结构相似性,并且都包含其进化枝中ATP酶的经典特征,包括带有沃克A基序的N端AAA亚结构域、通常与各种结合伴侣相互作用的插入结构域,以及包含沃克B基序、传感器I和II基序以及精氨酸指的C端AAA亚结构域。在本研究中,我们发现尽管Rvb1和Rvb2具有高度的结构相似性,但它们具有不同的活性位点,这些活性位点会影响它们在Rvb1/2复合物中的活性和调控。通过结合生化和遗传方法,我们表明用不同氨基酸替换Rvb1和Rvb2的同源精氨酸指不仅对复合物的催化活性有不同影响,还会影响细胞生长以及Rvb1/2与结合伴侣的相互作用。使用分子动力学模拟,我们发现Rvb1和Rvb2活性位点附近的变化会对插入结构域中的蛋白质动力学产生远程影响,这为ATP水解催化位点内的酶活性如何传递到Rvb1/2复合物的其他结构域以调节其功能提供了分子基础。此外,我们展示了精氨酸指变体对snoRNP生物合成的影响,并使用靶向遗传筛选验证了分子动力学模拟的结果。总之,我们的结果通过识别从复合物的ATP酶活性位点到辅因子结合位点的远程分子通讯传递,揭示了Rvb1/2复合物调控的新方面。最重要的是,我们的发现表明,尽管在同一蛋白质复合物中具有高度相似性和协同作用,但这两种蛋白质已经进化出了对Rvb1/2复合物的调控和功能至关重要的独特特性。