Heuser J E, Anderson R G
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110.
J Cell Biol. 1989 Feb;108(2):389-400. doi: 10.1083/jcb.108.2.389.
Two seemingly unrelated experimental treatments inhibit receptor mediated endocytosis: (a) depletion of intracellular K+ (Larkin, J. M., M. S. Brown, J. L. Goldstein, and R. G. W. Anderson. 1983. Cell. 33:273-285); and (b) treatment with hypertonic media (Daukas, G., and S. H. Zigmond. 1985. J. Cell Biol. 101:1673-1679). Since the former inhibits the formation of clathrin-coated pits (Larkin, J. M., W. D. Donzell, and R. G. W. Anderson, 1986. J. Cell Biol. 103:2619-2627), we were interested in determining whether hypertonic treatment has the same effect, and if so, why. Fibroblasts (human or chicken) were incubated in normal saline made hypertonic with 0.45 M sucrose, then broken open by sonication and freeze-etched to generate replicas of their inner membrane surfaces. Whereas untreated cells display typical geodesic lattices of clathrin under each coated pit, hypertonic cells display in addition a number of empty clathrin "microcages". At first, these appear around the edges of normal coated pit lattices. With further time in hypertonic medium, however, normal lattices largely disappear and are replaced by accumulations of microcages. Concomitantly, low density lipoprotein (LDL) receptors lose their normal clustered distribution and become dispersed all over the cell surface, as seen by fluorescence microscopy and freeze-etch electron microscopy of LDL attached to the cell surface. Upon return to normal medium at 37 degrees C, these changes promptly reverse. Within 2 min, small clusters of LDL reappear on the surfaces of cells and normal clathrin lattices begin to reappear inside; the size and number of these receptor/clathrin complexes returns to normal over the next 10 min. Thus, in spite of their seeming unrelatedness, both K+ depletion and hypertonic treatment cause coated pits to disappear, and both induce abnormal clathrin polymerization into empty microcages. This suggests that in both cases, an abnormal formation of microcages inhibits endocytosis by rendering clathrin unavailable for assembly into normal coated pits.
(a) 细胞内K+的耗竭(拉金,J.M.,M.S. 布朗,J.L. 戈尔茨坦,以及R.G.W. 安德森。1983年。《细胞》。33:273 - 285);以及(b) 用高渗介质处理(多卡斯,G.,以及S.H. 齐格蒙德。1985年。《细胞生物学杂志》。101:1673 - 1679)。由于前者会抑制网格蛋白包被小窝的形成(拉金,J.M.,W.D. 唐泽尔,以及R.G.W. 安德森,1986年。《细胞生物学杂志》。103:2619 - 2627),我们感兴趣的是确定高渗处理是否有相同的效果,如果有,原因是什么。将成纤维细胞(人或鸡的)置于用0.45 M蔗糖使其变为高渗的生理盐水中孵育,然后通过超声破碎并进行冷冻蚀刻以生成其内膜表面的复制品。未经处理的细胞在每个包被小窝下方显示出典型的网格蛋白 geodesic 晶格,而高渗处理的细胞还会出现一些空的网格蛋白“微笼”。起初,这些微笼出现在正常包被小窝晶格的边缘。然而,在高渗培养基中放置更长时间后,正常晶格大部分消失并被微笼的聚集物所取代。与此同时,低密度脂蛋白(LDL)受体失去其正常的聚集分布,并分散在整个细胞表面,这通过附着在细胞表面的LDL的荧光显微镜检查和冷冻蚀刻电子显微镜检查得以观察到。当在37摄氏度恢复到正常培养基时,这些变化迅速逆转。在2分钟内,细胞表面重新出现小簇的LDL,并且细胞内开始重新出现正常的网格蛋白晶格;在接下来的10分钟内,这些受体/网格蛋白复合物的大小和数量恢复正常。因此,尽管它们看似不相关,但K+耗竭和高渗处理都会导致包被小窝消失,并且两者都会诱导网格蛋白异常聚合成空的微笼。这表明在这两种情况下,微笼的异常形成通过使网格蛋白无法组装成正常的包被小窝而抑制内吞作用。