Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada.
Department of Physics, Faculty of Science, McGill University, Montreal, Canada.
Biophys J. 2023 Sep 19;122(18):3783-3797. doi: 10.1016/j.bpj.2023.08.005. Epub 2023 Aug 9.
Membrane cholesterol-rich domains have been shown to be important for regulating a range of membrane protein activities. Low-density lipoprotein receptor (LDLR)-mediated internalization of cholesterol-rich LDL particles is tightly regulated by feedback mechanisms involving intracellular sterol sensors. Since LDLR plays a role in maintaining cellular cholesterol homeostasis, we explore the role that membrane domains may have in regulating LDLR activity. We expressed a fluorescent LDLR-mEGFP construct in HEK293T cells and imaged the unligated receptor or bound to an LDL/DiI fluorescent ligand using total internal reflection fluorescence microscopy. We studied the receptor's spatiotemporal dynamics using fluorescence fluctuation analysis methods. Image cross correlation spectroscopy reveals a lower LDL-to-LDLR binding fraction when membrane cholesterol concentrations are augmented using cholesterol esterase, and a higher binding fraction when the cells are treated with methyl-β-cyclodextrin) to lower membrane cholesterol. This suggests that LDLR's ability to metabolize LDL particles is negatively correlated to membrane cholesterol concentrations. We then tested if a change in activity is accompanied by a change in membrane localization. Image mean-square displacement analysis reveals that unligated LDLR-mEGFP and ligated LDLR-mEGFP/LDL-DiI constructs are transiently confined on the cell membrane, and the size of their confinement domains increases with augmented cholesterol concentrations. Receptor diffusion within the domains and their domain-escape probabilities decrease upon treatment with methyl-β-cyclodextrin, consistent with a change in receptor populations to more confined domains, likely clathrin-coated pits. We propose a feedback model to account for regulation of LDLR within the cell membrane: when membrane cholesterol concentrations are high, LDLR is sequestered in cholesterol-rich domains. These LDLR populations are attenuated in their efficacy to bind and internalize LDL. However, when membrane cholesterol levels drop, LDL has a higher binding affinity to its receptor and the LDLR transits to nascent clathrin-coated domains, where it diffuses at a slower rate while awaiting internalization.
膜胆固醇丰富的区域被证明对调节一系列膜蛋白的活性非常重要。富含胆固醇的 LDL 颗粒通过涉及细胞内固醇传感器的反馈机制进行 LDLR 介导的内化。由于 LDLR 在维持细胞胆固醇稳态中发挥作用,我们探索了膜结构域在调节 LDLR 活性方面可能发挥的作用。我们在 HEK293T 细胞中表达了荧光 LDLR-mEGFP 构建体,并使用全内反射荧光显微镜对未连接的受体或与 LDL/DiI 荧光配体结合的受体进行成像。我们使用荧光波动分析方法研究了受体的时空动力学。图像互相关谱分析显示,在用胆固醇酯酶增加膜胆固醇浓度时,LDL 与 LDLR 的结合分数较低,而在用甲基-β-环糊精处理以降低膜胆固醇时,结合分数较高。这表明 LDLR 代谢 LDL 颗粒的能力与膜胆固醇浓度呈负相关。然后,我们测试了活性的变化是否伴随着膜定位的变化。图像均方根位移分析表明,未连接的 LDLR-mEGFP 和连接的 LDLR-mEGFP/LDL-DiI 构建体在细胞膜上短暂受限,其受限域的大小随胆固醇浓度的增加而增加。用甲基-β-环糊精处理后,受体在域内的扩散及其域逃逸概率降低,这与受体群体向更受限的域的变化一致,可能是网格蛋白包被的陷窝。我们提出了一个反馈模型来解释 LDLR 在细胞膜内的调节:当膜胆固醇浓度较高时,LDLR 被隔离在富含胆固醇的区域。这些 LDLR 群体在结合和内化 LDL 的效力上受到抑制。然而,当膜胆固醇水平下降时,LDL 与受体的结合亲和力增加,LDLR 转移到新生的网格蛋白包被的区域,在那里它以较慢的速度扩散,同时等待内化。