Ferreira Tiago H, Marino Attilio, Rocca Antonella, Liakos Ioannis, Nitti Simone, Athanassiou Athanassia, Mattoli Virgilio, Mazzolai Barbara, de Sousa Edesia M B, Ciofani Gianni
SENAN - Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, Av. Presidente Antônio Carlos 6627 - Campus da UFMG, Belo Horizonte, MG CEP 30270-901, Brazil.
Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy.
Int J Pharm. 2015 Mar 15;481(1-2):56-63. doi: 10.1016/j.ijpharm.2015.01.048. Epub 2015 Jan 28.
Boron nitride nanotubes (BNNTs) have generated considerable interest among the scientific community because of their unique physical and chemical properties. They present good chemical inertness, high thermal stability, and optimal resistance to oxidation, that make them ideal candidates for biomedical applications, in particular as nanovectors for drug, gene and protein delivery into the cells. In this study, BNNTs were prepared through a synthesis based on a chemical vapor deposition (CVD) method, and thereafter chemically functionalized with folic acid. The obtained nanostructures have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The characterization showed efficiently functionalized BNNTs of length of about 1 μm. Furthermore, confocal laser microscopy demonstrated that our nanotubes can be fluorescently-traced under appropriate excitation. Thanks to this property, it has been possible to investigate their internalization by HeLa cells through confocal microscopy, demonstrating that the BNNT up-take clearly increases after the functionalization with folate, a result confirmed by inductively coupled plasma (ICP) assessment of boron content inside the treated cell cultures.
氮化硼纳米管(BNNTs)因其独特的物理和化学性质而在科学界引起了广泛关注。它们具有良好的化学惰性、高热稳定性和优异的抗氧化性,这使其成为生物医学应用的理想候选材料,特别是作为将药物、基因和蛋白质递送至细胞内的纳米载体。在本研究中,通过基于化学气相沉积(CVD)方法的合成制备了BNNTs,然后用叶酸对其进行化学功能化。所得纳米结构通过傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、热重分析(TGA)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行了表征。表征显示出长度约为1μm的有效功能化的BNNTs。此外,共聚焦激光显微镜表明,在适当的激发下,我们的纳米管可以被荧光追踪。由于这一特性,通过共聚焦显微镜研究了它们被HeLa细胞内化的情况,结果表明在用叶酸功能化后,BNNT的摄取明显增加,这一结果通过对处理后的细胞培养物中硼含量的电感耦合等离子体(ICP)评估得到了证实。