Suppr超能文献

分析机械负荷和渗透负荷对软骨组织中糖胺聚糖合成速率的影响。

Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

作者信息

Gao Xin, Zhu Qiaoqiao, Gu Weiyong

机构信息

Department of Mechanical and Aerospace Engineering, Tissue Biomechanics Laboratory, University of Miami, Coral Gables, FL 33124-0624, United States.

Department of Biomedical Engineering, Tissue Biomechanics Laboratory, University of Miami, Coral Gables, FL 33124-0624, United States.

出版信息

J Biomech. 2015 Feb 26;48(4):573-577. doi: 10.1016/j.jbiomech.2015.01.018. Epub 2015 Jan 21.

Abstract

The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix.

摘要

糖胺聚糖(GAG)在软骨组织中发挥着重要作用,以支持和传递机械负荷。许多细胞外生物物理刺激会影响细胞的GAG合成。据推测,细胞体积的变化是细胞感知刺激的主要机制。实验研究表明,GAG的最大合成速率在最佳细胞体积时实现,大于或小于此水平,GAG合成速率都会降低。基于该假设和文献中的实验结果,我们提出了一个数学模型,以定量描述软骨组织中依赖于细胞体积的GAG合成速率。利用该模型,我们研究了渗透压负荷和机械负荷对GAG合成速率的影响。结果发现,我们提出的数学模型能够很好地描述在分离细胞或软骨中,随着渗透压负荷或机械负荷变化时GAG合成速率的变化。该模型对于评估软骨组织内的GAG合成活性以及理解机械负荷在组织生长或退变中的作用很重要。对于设计具有适当细胞外环境或机械负荷的生物反应器系统,以使组织以细胞外基质的最大合成速率生长也很重要。

相似文献

1
Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.
J Biomech. 2015 Feb 26;48(4):573-577. doi: 10.1016/j.jbiomech.2015.01.018. Epub 2015 Jan 21.
2
Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.
J Biomech. 2016 Sep 6;49(13):2655-2661. doi: 10.1016/j.jbiomech.2016.05.028. Epub 2016 Jun 1.
3
Influence of the temporal deposition of extracellular matrix on the mechanical properties of tissue-engineered cartilage.
Tissue Eng Part A. 2014 May;20(9-10):1476-85. doi: 10.1089/ten.TEA.2013.0345. Epub 2014 Apr 15.
5
Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading.
Biomech Model Mechanobiol. 2007 Jan;6(1-2):113-25. doi: 10.1007/s10237-006-0042-1. Epub 2006 May 12.
6
Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage.
J Orthop Res. 2002 Jul;20(4):842-8. doi: 10.1016/S0736-0266(01)00160-7.
8
A constitutive model for the mechanical behaviour of soft connective tissues.
J Biomech. 1987;20(7):681-92. doi: 10.1016/0021-9290(87)90034-0.
10
Bovine annulus fibrosus hydration affects rate-dependent failure mechanics in tension.
J Biomech. 2019 May 24;89:34-39. doi: 10.1016/j.jbiomech.2019.04.008. Epub 2019 Apr 10.

引用本文的文献

1
Effect of microgravity on mechanical loadings in lumbar spine at various postures: a numerical study.
NPJ Microgravity. 2023 Feb 15;9(1):16. doi: 10.1038/s41526-023-00253-8.
3
Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.
J Biomech. 2016 Sep 6;49(13):2655-2661. doi: 10.1016/j.jbiomech.2016.05.028. Epub 2016 Jun 1.
4
Osteoarthritis year in review 2015: mechanics.
Osteoarthritis Cartilage. 2016 Jan;24(1):27-35. doi: 10.1016/j.joca.2015.08.018.
5
Simulation of biological therapies for degenerated intervertebral discs.
J Orthop Res. 2016 Apr;34(4):699-708. doi: 10.1002/jor.23061. Epub 2015 Oct 13.
6
Effects of Osmolarity on the Spontaneous Calcium Signaling of In Situ Juvenile and Adult Articular Chondrocytes.
Ann Biomed Eng. 2016 Apr;44(4):1138-47. doi: 10.1007/s10439-015-1406-4. Epub 2015 Jul 29.

本文引用的文献

1
Temporal changes of mechanical signals and extracellular composition in human intervertebral disc during degenerative progression.
J Biomech. 2014 Nov 28;47(15):3734-43. doi: 10.1016/j.jbiomech.2014.09.004. Epub 2014 Sep 19.
2
Simulation of the progression of intervertebral disc degeneration due to decreased nutritional supply.
Spine (Phila Pa 1976). 2014 Nov 15;39(24):E1411-7. doi: 10.1097/BRS.0000000000000560.
4
TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1316-21. doi: 10.1073/pnas.1319569111. Epub 2014 Jan 13.
5
Applied osmotic loading for promoting development of engineered cartilage.
J Biomech. 2013 Oct 18;46(15):2674-81. doi: 10.1016/j.jbiomech.2013.07.043. Epub 2013 Aug 30.
6
Long-term culture of bovine nucleus pulposus explants in a native environment.
Spine J. 2013 Apr;13(4):454-63. doi: 10.1016/j.spinee.2012.12.006. Epub 2013 Jan 20.
7
Culturing bovine nucleus pulposus explants by balancing medium osmolarity.
Tissue Eng Part C Methods. 2011 Nov;17(11):1089-96. doi: 10.1089/ten.TEC.2011.0215. Epub 2011 Aug 29.
10
A mixture theory analysis for passive transport in osmotic loading of cells.
J Biomech. 2006;39(3):464-75. doi: 10.1016/j.jbiomech.2004.12.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验