Suppr超能文献

微重力对腰椎在不同姿势下机械负荷的影响:一项数值研究。

Effect of microgravity on mechanical loadings in lumbar spine at various postures: a numerical study.

作者信息

Wu Biao, Gao Xin, Qin Bing, Baldoni Michele, Zhou Lu, Qian Zhiyu, Zhu Qiaoqiao

机构信息

Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

Department of Biomedical Engineering, University of Miami, Miami, FL, USA.

出版信息

NPJ Microgravity. 2023 Feb 15;9(1):16. doi: 10.1038/s41526-023-00253-8.

Abstract

The aim of this study was to quantitatively analyze the mechanical change of spinal segments (disc, muscle, and ligament) at various postures under microgravity using a full-body musculoskeletal modeling approach. Specifically, in the lumbar spine, the vertebra were modeled as rigid bodies, the intervertebral discs were modeled as 6-degree-of-freedom joints with linear force-deformation relationships, the disc swelling pressure was deformation dependent, the ligaments were modeled as piecewise linear elastic materials, the muscle strength was dependent on its functional cross-sectional area. The neutral posture and the "fetal tuck" posture in microgravity (short as "Neutral 0G" and "Fetal Tuck 0G", in our simulation, the G constant was set to 0 for simulating microgravity), and for comparison, the relaxed standing posture in 1G and 0G gravity (short as "Neutral 1G" and "Standing 0G") were simulated. Compared to values at Neutral 1G, the mechanical response in the lower spine changed significantly at Neutral 0G. For example, the compressive forces on lumbar discs decreased 62-70%, the muscle forces decreased 55.7-92.9%, while disc water content increased 7.0-10.2%, disc height increased 2.1-3.0%, disc volume increased 6.4-9.3%, and ligament forces increased 59.5-271.3% at Neutral 0G. The fetal tuck 0G reversed these changes at Neutral 0G back toward values at Neutral 1G, with magnitudes much larger than those at Neutral 1G. Our results suggest that microgravity has significant influences on spinal biomechanics, alteration of which may increase the risks of disc herniation and degeneration, muscle atrophy, and/or ligament failure.

摘要

本研究的目的是使用全身肌肉骨骼建模方法,定量分析微重力环境下不同姿势时脊柱节段(椎间盘、肌肉和韧带)的力学变化。具体而言,在腰椎中,椎体被建模为刚体,椎间盘被建模为具有线性力-变形关系的六自由度关节,椎间盘肿胀压力取决于变形,韧带被建模为分段线性弹性材料,肌肉力量取决于其功能横截面积。模拟了微重力环境下的中立姿势和“胎儿蜷缩”姿势(简称为“Neutral 0G”和“Fetal Tuck 0G”,在我们的模拟中,G常数设置为0以模拟微重力),并进行比较,还模拟了1G和0G重力下的放松站立姿势(简称为“Neutral 1G”和“Standing 0G”)。与Neutral 1G时的值相比,Neutral 0G时下脊柱的力学响应发生了显著变化。例如,在Neutral 0G时,腰椎间盘上的压缩力降低了62 - 70%,肌肉力量降低了55.7 - 92.9%,而椎间盘含水量增加了7.0 - 10.2%,椎间盘高度增加了2.1 - 3.0%,椎间盘体积增加了6.4 - 9.3%,韧带力量增加了59.5 - 271.3%。胎儿蜷缩0G姿势将Neutral 0G时的这些变化逆转回接近Neutral 1G时的值,且幅度远大于Neutral 1G时的值。我们 的结果表明,微重力对脊柱生物力学有显著影响,其改变可能会增加椎间盘突出和退变、肌肉萎缩和/或韧带失效 的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1066/9931710/79846bb3e1b8/41526_2023_253_Fig1_HTML.jpg

相似文献

1
Effect of microgravity on mechanical loadings in lumbar spine at various postures: a numerical study.
NPJ Microgravity. 2023 Feb 15;9(1):16. doi: 10.1038/s41526-023-00253-8.
2
Effect of lumbar muscle atrophy on the mechanical loading change on lumbar intervertebral discs.
J Biomech. 2022 Jun;139:111120. doi: 10.1016/j.jbiomech.2022.111120. Epub 2022 May 6.
3
Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.
Biomech Model Mechanobiol. 2020 Dec;19(6):2015-2047. doi: 10.1007/s10237-020-01322-7. Epub 2020 Apr 20.
4
From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability.
Spine J. 2018 Jan;18(1):7-14. doi: 10.1016/j.spinee.2017.08.261. Epub 2017 Sep 28.
5
Pathophysiology of low back pain during exposure to microgravity.
Aviat Space Environ Med. 2008 Apr;79(4):365-73. doi: 10.3357/asem.1994.2008.
6
Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.
J Biomech. 2018 Mar 21;70:43-50. doi: 10.1016/j.jbiomech.2017.10.033. Epub 2017 Nov 6.
8
Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain.
Spine (Phila Pa 1976). 2000 Feb 15;25(4):431-7; discussion 438. doi: 10.1097/00007632-200002150-00007.
9
Biomechanical changes in the lumbar spine following spaceflight and factors associated with postspaceflight disc herniation.
Spine J. 2022 Feb;22(2):197-206. doi: 10.1016/j.spinee.2021.07.021. Epub 2021 Jul 31.
10
The effect of simulated microgravity on lumbar spine biomechanics: an in vitro study.
Eur Spine J. 2016 Sep;25(9):2889-97. doi: 10.1007/s00586-015-4221-6. Epub 2015 Sep 24.

本文引用的文献

1
Effect of lumbar muscle atrophy on the mechanical loading change on lumbar intervertebral discs.
J Biomech. 2022 Jun;139:111120. doi: 10.1016/j.jbiomech.2022.111120. Epub 2022 May 6.
2
Anthropometric Changes in Spaceflight.
Hum Factors. 2023 Sep;65(6):977-987. doi: 10.1177/00187208211049008. Epub 2021 Oct 22.
3
Intervertebral disc degeneration relates to biomechanical changes of spinal ligaments.
Spine J. 2021 Aug;21(8):1399-1407. doi: 10.1016/j.spinee.2021.04.016. Epub 2021 Apr 24.
5
Changes in seated height in microgravity.
Appl Ergon. 2020 Feb;83:102995. doi: 10.1016/j.apergo.2019.102995. Epub 2019 Nov 15.
6
Effect of fixed charge density on water content of IVD during bed rest: A numerical analysis.
Med Eng Phys. 2019 Aug;70:72-77. doi: 10.1016/j.medengphy.2019.06.011. Epub 2019 Jun 25.
7
Lumbopelvic Muscle Changes Following Long-Duration Spaceflight.
Front Physiol. 2019 May 21;10:627. doi: 10.3389/fphys.2019.00627. eCollection 2019.
8
Articular cartilage and sternal fibrocartilage respond differently to extended microgravity.
NPJ Microgravity. 2019 Feb 18;5:3. doi: 10.1038/s41526-019-0063-6. eCollection 2019.
10
Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.
J Biomech. 2016 Sep 6;49(13):2655-2661. doi: 10.1016/j.jbiomech.2016.05.028. Epub 2016 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验