Suppr超能文献

基于稀疏表示、非局部相似性和稀疏导数先验的磁共振图像超分辨率重建。

MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior.

机构信息

School of Information Engineering, Guangdong Medical College, Dongguan, China; School of Electronics and Information, South China University of Technology, Guangzhou, China.

Department of Physics, Shaoguan University, Shaoguan, China.

出版信息

Comput Biol Med. 2015 Mar;58:130-45. doi: 10.1016/j.compbiomed.2014.12.023. Epub 2015 Jan 7.

Abstract

In magnetic resonance (MR) imaging, image spatial resolution is determined by various instrumental limitations and physical considerations. This paper presents a new algorithm for producing a high-resolution version of a low-resolution MR image. The proposed method consists of two consecutive steps: (1) reconstructs a high-resolution MR image from a given low-resolution observation via solving a joint sparse representation and nonlocal similarity L1-norm minimization problem; and (2) applies a sparse derivative prior based post-processing to suppress blurring effects. Extensive experiments on simulated brain MR images and two real clinical MR image datasets validate that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both quantitative measures and visual perception.

摘要

在磁共振(MR)成像中,图像空间分辨率由各种仪器限制和物理因素决定。本文提出了一种从低分辨率观测中生成高分辨率 MR 图像的新算法。该方法由两个连续步骤组成:(1)通过求解联合稀疏表示和非局部相似性 L1 范数最小化问题,从给定的低分辨率观测中重建高分辨率 MR 图像;(2)应用基于稀疏导数先验的后处理来抑制模糊效应。在模拟脑 MR 图像和两个真实临床 MR 图像数据集上的大量实验验证了,与许多最先进的算法相比,该方法在定量测量和视觉感知方面都取得了更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验