Suppr超能文献

磁共振图像的超分辨率

Super Resolution of Magnetic Resonance Images.

作者信息

Kaur Prabhjot, Sao Anil Kumar, Ahuja Chirag Kamal

机构信息

Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India.

Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India.

出版信息

J Imaging. 2021 Jun 21;7(6):101. doi: 10.3390/jimaging7060101.

Abstract

In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise-noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer's disease and structural deformity, i.e., cavernoma.

摘要

在这项工作中,提出了用于磁共振(MR)图像的新型去噪和超分辨率(SR)方法,并将其集成到一个统一的框架中,该框架不需要低分辨率(LR)/高分辨率(HR)/跨模态/无噪声图像示例以及噪声方差的先验信息。所提出的方法将图像块分类为平滑或纹理块,然后通过部署不同的去噪策略对其进行去噪以实现高效去噪。去噪算法被集成到SR方法中,该方法在基于稀疏表示的框架中使用基于梯度轮廓的约束来提高MR图像的分辨率,同时减少图像细节的模糊。这种约束对HR图像的估计进行正则化,使得估计的HR图像具有与原始HR图像的梯度轮廓相似的梯度轮廓。为此,使用LR图像和上采样LR图像的GPS值之间的近似分段线性关系来估计未知HR图像的梯度轮廓锐度(GPS)值。实验在三个不同的公开可用数据集上进行。对于上采样因子2和3,所提出的SR方法分别比现有的用于真实MR图像的无监督SR方法(利用低秩和全变差(LRTV)正则化)平均峰值信噪比(PSNR)高出0.73 dB和0.38 dB。对于有噪声的真实MR图像(退化2%噪声)的超分辨率,对于上采样因子2和3,所提出的方法分别比LRTV方法平均PSNR高出0.54 dB和0.46 dB。对来自健康受试者以及患有阿尔茨海默病和结构畸形(即海绵状血管瘤)的受试者的真实MR图像进行了定性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91fe/8321357/6be1015c697f/jimaging-07-00101-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验