Suppr超能文献

利用 CRISPR/Cas9 在酿酒酵母中进行多重代谢途径工程。

Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.

机构信息

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA.

出版信息

Metab Eng. 2015 Mar;28:213-222. doi: 10.1016/j.ymben.2015.01.008. Epub 2015 Jan 28.

Abstract

CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains. We applied our genome engineering tool for an exploratory analysis of all possible single, double, triple, quadruple and quintuple gene disruption combinations to search for strains with high mevalonate production, a key intermediate for the industrially important isoprenoid biosynthesis pathway. Even though we did not overexpress any genes in the mevalonate pathway, this analysis identified strains with mevalonate titers greater than 41-fold compared to the wild-type strain. Our findings illustrate the applicability of this highly specific and efficient multiplex genome engineering approach to accelerate functional genomics and metabolic engineering efforts.

摘要

CRISPR/Cas9 是一种靶向且无标记基因组工程的简单而高效的工具。在这里,我们报告了一种多路 CRISPR/Cas9 系统的开发和成功应用,该系统可在一步转化中对多达 5 个不同的基因组位点进行基因组工程。为了评估该工具的特异性,我们利用基因组重测序筛选了所有靶向不同 gRNA 的单敲除菌株中的脱靶位点。与野生型参考菌株相比,这种广泛的分析并未在 CRISPR/Cas9 工程菌株中发现更多的基因组变异。我们将我们的基因组工程工具应用于对所有可能的单、双、三、四和五重基因敲除组合的探索性分析,以寻找具有高甲羟戊酸产量的菌株,甲羟戊酸是工业上重要的异戊烯基生物合成途径的关键中间体。尽管我们没有在甲羟戊酸途径中过表达任何基因,但该分析确定了与野生型菌株相比,甲羟戊酸产量超过 41 倍的菌株。我们的研究结果表明,这种高度特异性和高效的多路基因组工程方法适用于加速功能基因组学和代谢工程研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验