文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蔗糖驱动的碳氧化还原平衡消除了巴斯德效应并增强了酵母中的能量代谢。

Sucrose-driven carbon redox rebalancing eliminates the Crabtree effect and boosts energy metabolism in yeast.

作者信息

Xiao Zhiqiang, Zhao Yifei, Wang Yongtong, Tan Xinjia, Wang Lian, Mao Jiwei, Zhang Siqi, Lu Qiyuan, Hu Fanglin, Zuo Shasha, Liu Juan, Shan Yang

机构信息

Longping Agricultural College, Hunan University, Changsha, 410125, China.

Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.

出版信息

Nat Commun. 2025 Jun 5;16(1):5211. doi: 10.1038/s41467-025-60578-8.


DOI:10.1038/s41467-025-60578-8
PMID:40473667
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12141580/
Abstract

Saccharomyces cerevisiae primarily generates energy through glycolysis and respiration. However, the manifestation of the Crabtree effect results in substantial carbon loss and energy inefficiency, which significantly diminishes product yield and escalates substrate costs in microbial cell factories. To address this challenge, we introduce the sucrose phosphorolysis pathway and delete the phosphoglucose isomerase gene PGI1, effectively decoupling glycolysis from respiration and facilitating the metabolic transition of yeast to a Crabtree-negative state. Additionally, a synthetic energy system is engineered to regulate the NADH/NAD ratio, ensuring sufficient ATP supply and maintaining redox balance for optimal growth. The reprogrammed yeast strain exhibits significantly higher yields of various non-ethanol compounds, with lactic acid and 3-hydroxypropionic acid production increasing by 8- to 11-fold comparing to the conventional Crabtree-positive strain. This study describes an approach for overcoming the Crabtree effect in yeast, substantially improving energy metabolism, carbon recovery, and product yields.

摘要

酿酒酵母主要通过糖酵解和呼吸作用产生能量。然而,克勒勃屈利效应的表现导致大量碳损失和能量利用效率低下,这显著降低了微生物细胞工厂中的产品产量并提高了底物成本。为应对这一挑战,我们引入了蔗糖磷酸解途径并删除了磷酸葡萄糖异构酶基因PGI1,有效地使糖酵解与呼吸作用脱钩,并促进酵母向克勒勃屈利阴性状态的代谢转变。此外,设计了一种合成能量系统来调节NADH/NAD比率,确保充足的ATP供应并维持氧化还原平衡以实现最佳生长。重新编程的酵母菌株表现出各种非乙醇化合物的产量显著提高,与传统的克勒勃屈利阳性菌株相比,乳酸和3-羟基丙酸的产量增加了8至11倍。本研究描述了一种克服酵母中克勒勃屈利效应的方法,可大幅改善能量代谢、碳回收和产品产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/afe8fa2ac82d/41467_2025_60578_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/f34d2cef7d1d/41467_2025_60578_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/fc961ee6413b/41467_2025_60578_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/f1fa992aa574/41467_2025_60578_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/f96af19e8c96/41467_2025_60578_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/cedb90b8bf64/41467_2025_60578_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/afe8fa2ac82d/41467_2025_60578_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/f34d2cef7d1d/41467_2025_60578_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/fc961ee6413b/41467_2025_60578_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/f1fa992aa574/41467_2025_60578_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/f96af19e8c96/41467_2025_60578_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/cedb90b8bf64/41467_2025_60578_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/12141580/afe8fa2ac82d/41467_2025_60578_Fig6_HTML.jpg

相似文献

[1]
Sucrose-driven carbon redox rebalancing eliminates the Crabtree effect and boosts energy metabolism in yeast.

Nat Commun. 2025-6-5

[2]
Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative.

J Biosci Bioeng. 2020-1

[3]
Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.

Microb Cell Fact. 2016-3-15

[4]
Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.

J Biosci Bioeng. 2015-1

[5]
Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis.

Appl Environ Microbiol. 2011-2-18

[6]
The advances in creating Crabtree-negative Saccharomyces cerevisiae and the application for chemicals biosynthesis.

FEMS Yeast Res. 2025-1-30

[7]
Fed-batch system for cultivating genetically engineered yeast that produces lactic acid via the fermentative promoter.

J Biosci Bioeng. 2012-9-27

[8]
Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.

Proc Natl Acad Sci U S A. 2007-2-13

[9]
Fermentative metabolism impedes p53-dependent apoptosis in a Crabtree-positive but not in Crabtree-negative yeast.

J Biosci. 2017-12

[10]
Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase.

FEMS Yeast Res. 2019-9-1

本文引用的文献

[1]
Machine Learning-Guided Optimization of -Coumaric Acid Production in Yeast.

ACS Synth Biol. 2024-4-19

[2]
Mitochondrial ATP generation is more proteome efficient than glycolysis.

Nat Chem Biol. 2024-9

[3]
Increased CO fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast.

Nat Commun. 2024-2-21

[4]
Carbon efficient production of chemicals with yeasts.

Yeast. 2023-12

[5]
Using a synthetic machinery to improve carbon yield with acetylphosphate as the core.

Nat Commun. 2023-8-30

[6]
Enzyme and Metabolic Engineering Strategies for Biosynthesis of α-Farnesene in .

J Agric Food Chem. 2023-8-23

[7]
Systematic Engineering of Chassis for Efficient Flavonoid-7--Disaccharide Biosynthesis.

ACS Synth Biol. 2023-9-15

[8]
Metabolic Engineering of for the Production of Triacetic Acid Lactone.

J Fungi (Basel). 2023-4-20

[9]
Advances in the optimization of central carbon metabolism in metabolic engineering.

Microb Cell Fact. 2023-4-21

[10]
Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production.

Biotechnol Biofuels Bioprod. 2023-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索