Suppr超能文献

微小RNA-靶基因调控网络:一种用于生物标志物选择的贝叶斯整合方法及其在肾癌中的应用

miRNA-target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer.

作者信息

Chekouo Thierry, Stingo Francesco C, Doecke James D, Do Kim-Anh

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 1400 Pressler Street, Unit 1411, Texas, 77030-3722, U.S.A.

CSIRO Computational Informatics/Australian e-Health Research Centre Level 5, UQ Health Sciences Building, 901/16 Royal Brisbane, Queensland, 4029, Australia.

出版信息

Biometrics. 2015 Jun;71(2):428-38. doi: 10.1111/biom.12266. Epub 2015 Jan 30.

Abstract

The availability of cross-platform, large-scale genomic data has enabled the investigation of complex biological relationships for many cancers. Identification of reliable cancer-related biomarkers requires the characterization of multiple interactions across complex genetic networks. MicroRNAs are small non-coding RNAs that regulate gene expression; however, the direct relationship between a microRNA and its target gene is difficult to measure. We propose a novel Bayesian model to identify microRNAs and their target genes that are associated with survival time by incorporating the microRNA regulatory network through prior distributions. We assume that biomarkers involved in regulatory networks are likely associated with survival time. We employ non-local prior distributions and a stochastic search method for the selection of biomarkers associated with the survival outcome. We use KEGG pathway information to incorporate correlated gene effects within regulatory networks. Using simulation studies, we assess the performance of our method, and apply it to experimental data of kidney renal cell carcinoma (KIRC) obtained from The Cancer Genome Atlas. Our novel method validates previously identified cancer biomarkers and identifies biomarkers specific to KIRC progression that were not previously discovered. Using the KIRC data, we confirm that biomarkers involved in regulatory networks are more likely to be associated with survival time, showing connections in one regulatory network for five out of six such genes we identified.

摘要

跨平台大规模基因组数据的可用性使得对多种癌症复杂生物学关系的研究成为可能。识别可靠的癌症相关生物标志物需要对复杂遗传网络中的多种相互作用进行表征。微小RNA是调节基因表达的小非编码RNA;然而,微小RNA与其靶基因之间的直接关系很难测量。我们提出了一种新颖的贝叶斯模型,通过先验分布纳入微小RNA调控网络,来识别与生存时间相关的微小RNA及其靶基因。我们假设参与调控网络的生物标志物可能与生存时间相关。我们采用非局部先验分布和随机搜索方法来选择与生存结果相关的生物标志物。我们利用KEGG通路信息来纳入调控网络内的相关基因效应。通过模拟研究,我们评估了我们方法的性能,并将其应用于从癌症基因组图谱获得的肾透明细胞癌(KIRC)实验数据。我们的新方法验证了先前鉴定的癌症生物标志物,并鉴定出了先前未发现的KIRC进展特异性生物标志物。利用KIRC数据,我们证实参与调控网络的生物标志物更有可能与生存时间相关,在我们鉴定的六个此类基因中的五个基因中,显示出在一个调控网络中的联系。

相似文献

2
Identification of genes and pathways involved in kidney renal clear cell carcinoma.肾透明细胞癌相关基因和通路的鉴定
BMC Bioinformatics. 2014;15 Suppl 17(Suppl 17):S2. doi: 10.1186/1471-2105-15-S17-S2. Epub 2014 Dec 16.

引用本文的文献

5
Bayesian graphical models for modern biological applications.适用于现代生物学应用的贝叶斯图形模型。
Stat Methods Appt. 2022;31(2):197-225. doi: 10.1007/s10260-021-00572-8. Epub 2021 May 27.

本文引用的文献

3
Bayesian Model Selection in High-Dimensional Settings.高维情形下的贝叶斯模型选择
J Am Stat Assoc. 2012;107(498). doi: 10.1080/01621459.2012.682536.
8
MicroRNAs and lymphomagenesis: a functional review.MicroRNAs 与淋巴瘤发生:功能综述。
Br J Haematol. 2013 Mar;160(5):571-81. doi: 10.1111/bjh.12157. Epub 2012 Dec 4.
10
Joint analysis of miRNA and mRNA expression data.miRNA 和 mRNA 表达数据的联合分析。
Brief Bioinform. 2013 May;14(3):263-78. doi: 10.1093/bib/bbs028. Epub 2012 Jun 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验