Ferreira Patricia, Hernández-Ortega Aitor, Lucas Fátima, Carro Juan, Herguedas Beatriz, Borrelli Kenneth W, Guallar Victor, Martínez Angel T, Medina Milagros
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
FEBS J. 2015 Aug;282(16):3091-106. doi: 10.1111/febs.13221. Epub 2015 Feb 23.
Aryl-alcohol oxidase (AAO, EC 1.1.3.7) generates H2 O2 for lignin degradation at the expense of benzylic and other π system-containing primary alcohols, which are oxidized to the corresponding aldehydes. Ligand diffusion studies on Pleurotus eryngii AAO showed a T-shaped stacking interaction between the Tyr92 side chain and the alcohol substrate at the catalytically competent position for concerted hydride and proton transfers. Bi-substrate kinetics analysis revealed that reactions with 3-chloro- or 3-fluorobenzyl alcohols (halogen substituents) proceed via a ping-pong mechanism. However, mono- and dimethoxylated substituents (in 4-methoxybenzyl and 3,4-dimethoxybenzyl alcohols) altered the mechanism and a ternary complex was formed. Electron-withdrawing substituents resulted in lower quantum mechanics stacking energies between aldehyde and the tyrosine side chain, contributing to product release, in agreement with the ping-pong mechanism observed in 3-chloro- and 3-fluorobenzyl alcohol kinetics analysis. In contrast, the higher stacking energies when electron donor substituents are present result in reaction of O2 with the flavin through a ternary complex, in agreement with the kinetics of methoxylated alcohols. The contribution of Tyr92 to the AAO reaction mechanism was investigated by calculation of stacking interaction energies and site-directed mutagenesis. Replacement of Tyr92 by phenylalanine does not alter the AAO kinetic constants (on 4-methoxybenzyl alcohol), most probably because the stacking interaction is still possible. However, introduction of a tryptophan residue at this position strongly reduced the affinity for the substrate (i.e. the pre-steady state Kd and steady-state Km increase by 150-fold and 75-fold, respectively), and therefore the steady-state catalytic efficiency, suggesting that proper stacking is impossible with this bulky residue. The above results confirm the role of Tyr92 in substrate binding, thus governing the kinetic mechanism in AAO.
芳基醇氧化酶(AAO,EC 1.1.3.7)以苄醇和其他含π体系的伯醇为代价产生H2O2用于木质素降解,这些醇被氧化为相应的醛。对杏鲍菇AAO的配体扩散研究表明,在协同氢化物和质子转移的催化活性位置,Tyr92侧链与醇底物之间存在T形堆积相互作用。双底物动力学分析表明,与3-氯或3-氟苄醇(卤素取代基)的反应通过乒乓机制进行。然而,单甲氧基和二甲氧基取代基(在4-甲氧基苄醇和3,4-二甲氧基苄醇中)改变了反应机制并形成了三元复合物。吸电子取代基导致醛与酪氨酸侧链之间的量子力学堆积能量降低,有利于产物释放,这与3-氯和3-氟苄醇动力学分析中观察到的乒乓机制一致。相反,当存在供电子取代基时较高的堆积能量导致O2通过三元复合物与黄素反应,这与甲氧基化醇的动力学一致。通过计算堆积相互作用能和定点诱变研究了Tyr92对AAO反应机制的贡献。用苯丙氨酸取代Tyr92不会改变AAO动力学常数(对4-甲氧基苄醇而言),很可能是因为堆积相互作用仍然可能。然而,在该位置引入色氨酸残基会强烈降低对底物的亲和力(即预稳态Kd和稳态Km分别增加150倍和75倍),因此降低稳态催化效率,这表明这种庞大的残基不可能进行适当的堆积。上述结果证实了Tyr92在底物结合中的作用,从而决定了AAO中的动力学机制。