Hovav Y, Shimon D, Kaminker I, Feintuch A, Goldfarb D, Vega S
Weizmann institute of Science, Rehovot, Israel.
Phys Chem Chem Phys. 2015 Feb 28;17(8):6053-65. doi: 10.1039/c4cp05625f.
Dynamic Nuclear Polarization (DNP) experiments on solid dielectrics can be described in terms of the Solid Effect (SE) and Cross Effect (CE) mechanisms. These mechanisms are best understood by following the spin dynamics in electron-nuclear and electron-electron-nuclear model systems, respectively. Recently it was shown that the frequency swept DNP enhancement profiles can be reconstructed by combining basic SE and CE DNP spectra. However, this analysis did not take into account the role of the electron spectral diffusion (eSD), which can result in a dramatic loss of electron polarization along the EPR line. In this paper we extend the analysis of DNP spectra by including the influence of the eSD process on the enhancement profiles. We show for an electron-electron-nuclear model system that the change in nuclear polarization can be caused by direct MW irradiation on the CE electron transitions, resulting in a direct CE (dCE) enhancement, or by the influence of the eSD process on the spin system, resulting in nuclear enhancements via a process we term the indirect CE (iCE). We next derive the dependence of the basic SE, dCE, and iCE DNP spectra on the electron polarization distribution along the EPR line and on the MW irradiation frequency. The electron polarization can be obtained from ELDOR experiments, using a recent model which describes its temporal evolution in real samples. Finally, DNP and ELDOR spectra, recorded for a 40 mM TEMPOL sample at 10-40 K, are analyzed. It is shown that the iCE is the major mechanism responsible for the bulk nuclear enhancement at all temperatures.
在固体电介质上进行的动态核极化(DNP)实验可以根据固体效应(SE)和交叉效应(CE)机制来描述。分别通过跟踪电子 - 核以及电子 - 电子 - 核模型系统中的自旋动力学,能最好地理解这些机制。最近有研究表明,通过组合基本的SE和CE DNP光谱,可以重建频率扫描的DNP增强谱。然而,该分析没有考虑电子光谱扩散(eSD)的作用,它可能导致沿EPR线的电子极化显著损失。在本文中,我们通过纳入eSD过程对增强谱的影响,扩展了对DNP光谱的分析。对于一个电子 - 电子 - 核模型系统,我们表明核极化的变化可能是由CE电子跃迁上的直接微波(MW)照射引起的,从而导致直接CE(dCE)增强,或者是由eSD过程对自旋系统的影响引起的,通过一个我们称为间接CE(iCE)的过程导致核增强。接下来,我们推导了基本SE、dCE和iCE DNP光谱对沿EPR线的电子极化分布以及MW照射频率的依赖性。电子极化可以通过ELDOR实验获得,使用一个描述其在实际样品中时间演化的最新模型。最后,分析了在10 - 40 K下为40 mM TEMPOL样品记录的DNP和ELDOR光谱。结果表明,iCE是在所有温度下导致整体核增强的主要机制。