Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
Phys Chem Chem Phys. 2018 Nov 7;20(43):27646-27657. doi: 10.1039/c8cp04909b.
The dynamic nuclear polarization (DNP) efficiency is critically dependent on the properties of the radical, solvent, and solute constituting the sample system. In this study, we focused on the three spin e-e-n cross effect (CE)'s influence on the nuclear longitudinal relaxation time constant T1n, the build-up time constants of nuclear magnetic resonance (NMR) signal, TDNP and DNP-enhancement of NMR signal. The dipolar interaction strength between the electron spins driving the e-e-n process was systematically modulated using mono-, di-, tri-, and dendritic-nitroxide radicals, while maintaining a constant global electron spin concentration of 10 mM. Experimental results showed that an increase in electron spin clustering led to an increased electron spin depolarization, as mapped by electron double resonance (ELDOR), and a dramatically shortened T1n and TDNP time constants under static and magic angle spinning (MAS) conditions. A theoretical analysis reveals that strong e-e interactions, caused by electron spin clustering, increase the CE rate. The three spin e-e-n CE is a hitherto little recognized mechanism for shortening T1n and TDNP in solid-state NMR experiments at cryogenic temperatures, and offers a design principle to enhance the effective CE DNP enhancement per unit time. Fast CE rates will benefit DNP at liquid helium temperatures, or at higher magnetic fields and pulsed DNP, where slow e-e-n polarization transfer rate is a key bottleneck to achieving maximal DNP performance.
动态核极化 (DNP) 效率严重依赖于构成样品系统的自由基、溶剂和溶质的性质。在这项研究中,我们重点研究了三个自旋电子电子氮交叉效应 (CE) 对核纵向弛豫时间常数 T1n、核磁共振 (NMR) 信号的建立时间常数 TDNP 和 NMR 信号的 DNP 增强的影响。通过使用单、二、三、树枝状氮氧化物自由基,系统地调节驱动 e-e-n 过程的电子自旋之间的偶极相互作用强度,同时保持 10mM 的恒定全局电子自旋浓度。实验结果表明,电子自旋聚集体的增加导致电子自旋去极化的增加,如电子双共振 (ELDOR) 所示,并且在静态和魔角旋转 (MAS) 条件下,T1n 和 TDNP 时间常数显著缩短。理论分析表明,由电子自旋聚集引起的强 e-e 相互作用增加了 CE 速率。三个自旋 e-e-n CE 是低温固态 NMR 实验中缩短 T1n 和 TDNP 的一个迄今为止尚未被认识的机制,为提高单位时间内有效 CE DNP 增强提供了设计原则。快速 CE 速率将有利于液氦温度下的 DNP,或在更高的磁场和脉冲 DNP 下,其中缓慢的 e-e-n 极化转移速率是实现最大 DNP 性能的关键瓶颈。