Suppr超能文献

对精神疾病进行联合分析可提高精神分裂症、双相情感障碍和重度抑郁症风险预测的准确性。

Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder.

作者信息

Maier Robert, Moser Gerhard, Chen Guo-Bo, Ripke Stephan, Coryell William, Potash James B, Scheftner William A, Shi Jianxin, Weissman Myrna M, Hultman Christina M, Landén Mikael, Levinson Douglas F, Kendler Kenneth S, Smoller Jordan W, Wray Naomi R, Lee S Hong

机构信息

The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.

Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

Am J Hum Genet. 2015 Feb 5;96(2):283-94. doi: 10.1016/j.ajhg.2014.12.006. Epub 2015 Jan 29.

Abstract

Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk.

摘要

遗传风险预测在医学研究和临床实践中有多种潜在应用,例如可用于根据预测的遗传风险对异质性患者群体进行分层。然而,对于多基因性状,如精神疾病,风险预测的准确性较低。在此,我们使用多元线性混合模型并应用多性状基因组最佳线性无偏预测进行遗传风险预测。该方法利用了疾病之间的相关性,并同时评估每种疾病的个体风险。我们表明,在发现数据集以及独立验证数据集中,多变量方法显著提高了精神分裂症、双相情感障碍和重度抑郁症的预测准确性。通过基于基因组注释对单核苷酸多态性(SNP)进行分组并拟合多个随机效应,我们表明预测准确性可以进一步提高。多变量方法在预测准确性上的提升,相当于使用单性状模型时,精神分裂症样本量增加34%,双相情感障碍增加68%,重度抑郁症增加76%。由于我们的方法可以很容易地应用于任意数量的相关性状全基因组关联研究(GWAS)数据集,它是一种灵活且强大的工具,可最大限度地提高预测准确性。就目前的样本量而言,风险预测指标在临床环境中并无用处,但已经是一种有价值的研究工具,例如在比较高多基因风险和低多基因风险病例的实验设计中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df1/4320268/f8159df2ad89/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验