Di Michele F, Pizzichelli G, Mazzolai B, Sinibaldi E
Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale R. Piaggio 34, Pontedera 56025, Italy.
Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale R. Piaggio 34, Pontedera 56025, Italy; Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale R. Piaggio 34, Pontedera 56025, Italy.
Math Biosci. 2015 Apr;262:105-16. doi: 10.1016/j.mbs.2014.12.006. Epub 2015 Jan 30.
We study a magnetic-nanoparticle-mediated hyperthermia treatment by considering both the nanofluid infusion and the subsequent thermal activation of the infused nanoparticles. Our study aims at providing a quantitative framework, which is currently missing, for the design of hyperthermia treatments. In more detail, we consider a heterogeneous spherical tumor, and we obtain a simplified analytical expression for the nanoparticles concentration profile during the infusion. We then exploit such an expression in order to compute the steady-state temperature profile achieved through the heating step. Despite the simplifications introduced to enable the analytical derivations, we account for many physically relevant aspects including tissue heterogeneity, poroelasticity, blood perfusion, and nanoparticles absorption onto tissue. Moreover, our approach permits to elucidate the effects on the final temperature profile of the following control parameters: infusion duration and flow rate, nanoparticles concentration in the nanofluid, magnetic field intensity and frequency. We present illustrative numerical results, based on parameters values taken from experimental studies, which are consistent with previous numerical investigations and current hyperthermia approaches. In particular, we obtain optimal working curves which could be effectively used for planning real procedures. While not laying any claims of generality, this work takes a preliminary yet quantitative step toward the design of hyperthermia treatments.
我们通过考虑纳米流体输注以及随后注入的纳米颗粒的热激活来研究磁纳米颗粒介导的热疗。我们的研究旨在为热疗设计提供一个目前缺失的定量框架。更详细地说,我们考虑一个异质球形肿瘤,并获得了输注过程中纳米颗粒浓度分布的简化解析表达式。然后,我们利用这个表达式来计算通过加热步骤实现的稳态温度分布。尽管为了进行解析推导引入了一些简化,但我们考虑了许多物理相关方面,包括组织异质性、多孔弹性、血液灌注以及纳米颗粒在组织上的吸附。此外,我们的方法能够阐明以下控制参数对最终温度分布的影响:输注持续时间和流速、纳米流体中纳米颗粒的浓度、磁场强度和频率。我们基于从实验研究中获取的参数值给出了说明性的数值结果,这些结果与先前的数值研究和当前的热疗方法一致。特别是,我们获得了可有效用于规划实际手术的最佳工作曲线。虽然不主张具有普遍性,但这项工作朝着热疗设计迈出了初步但定量的一步。