Suppr超能文献

用于体内纳米诊疗热疗的磁性纳米颗粒聚集体的有效加热

Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

作者信息

Wang Chencai, Hsu Chao-Hsiung, Li Zhao, Hwang Lian-Pin, Lin Ying-Chih, Chou Pi-Tai, Lin Yung-Ya

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.

Department of Chemistry, National Taiwan University, Taipei, Taiwan.

出版信息

Int J Nanomedicine. 2017 Aug 28;12:6273-6287. doi: 10.2147/IJN.S141072. eCollection 2017.

Abstract

Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite FeO and cobalt ferrite CoFeO magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models.

摘要

磁共振(MR)纳米诊疗热疗利用磁性纳米颗粒靶向并在病变部位聚集,通过热疗直接杀死病变细胞,或通过热激活和药物控释间接杀死病变细胞。目前,MR纳米诊疗热疗的临床前和转化应用受到体内条件下一些主要理论难题和实验挑战的限制。例如,用于估算热生成和热疗最佳磁性纳米颗粒尺寸的传统模型无法准确再现已报道的体内实验结果。在这项工作中,提出了一种基于修正团簇的模型,通过明确考虑体内条件下磁性纳米颗粒的聚集来预测比吸收率(SLP)。与已报道的磁铁矿FeO和钴铁氧体CoFeO磁性纳米颗粒的实验结果进行比较,结果表明,与假设磁性纳米颗粒为单个单元的传统模型相比,基于修正团簇的模型对实验值的预测更准确。它还提供了一个清晰的物理图像:磁性纳米颗粒的聚集增加了团簇磁各向异性,同时降低了团簇畴磁化强度和平均磁矩,这反过来又使预测的SLP向较小的磁性纳米颗粒直径和较低的峰值偏移。结果,加热效率和SLP值降低。当磁性纳米颗粒直径在~10 - 20 nm范围内时,体内条件下预测精度的提高尤为明显。这恰好是MR癌症纳米诊疗的一个重要尺寸范围,因为它在体内对原发性和转移性肿瘤均表现出最高疗效。我们的研究表明,与先前模型预测的最佳尺寸相比,应选择直径相对小20% - 25%的磁性纳米颗粒以达到最大加热效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7fc/5584909/f6807f0e8bc4/ijn-12-6273Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验