Bainter Sierra A, Curran Patrick J
Department of Psychology, University of North Carolina at Chapel Hill.
J Cogn Dev. 2015 Jan;16(1):1-10. doi: 10.1080/15248372.2013.871721.
Amid recent progress in cognitive development research, high-quality data resources are accumulating, and data sharing and secondary data analysis is becoming an increasingly valuable tool. Integrative data analysis (IDA) is an exciting analytical framework that can enhance secondary data analysis in powerful ways. IDA pools item level data across multiple studies to make inferences possible both within and across studies and can be used to test questions not possible in individual contributing studies. Some of the potential benefits of IDA include the ability to study longer developmental periods, examine how the measurement of key constructs changes over time, increase subject heterogeneity, and improve statistical power and capability to study rare behaviors. Our goal in this paper is to provide a brief overview of the benefits and challenges of IDA in developmental research and to identify additional resources that provide more detailed discussions of this topic.
在认知发展研究的近期进展中,高质量的数据资源不断积累,数据共享和二次数据分析正成为越来越有价值的工具。整合数据分析(IDA)是一个令人兴奋的分析框架,它可以以强大的方式增强二次数据分析。IDA汇集多个研究中的项目级数据,以便在研究内部和研究之间进行推断,并且可用于测试在单个贡献研究中无法解决的问题。IDA的一些潜在好处包括能够研究更长的发展时期、检查关键结构的测量如何随时间变化、增加受试者的异质性,以及提高统计功效和研究罕见行为的能力。本文的目标是简要概述IDA在发展研究中的好处和挑战,并确定提供有关该主题更详细讨论的其他资源。