Tulipani Sara, Mora-Cubillos Ximena, Jáuregui Olga, Llorach Rafael, García-Fuentes Eduardo, Tinahones Francisco J, Andres-Lacueva Cristina
Biomarkers & Nutrimetabolomic Lab., Nutrition and Food Science Department, XaRTA, INSA, Campus Torribera, Pharmacy Faculty, University of Barcelona , 08028 Barcelona, Spain.
Anal Chem. 2015 Mar 3;87(5):2639-47. doi: 10.1021/ac503031d. Epub 2015 Feb 16.
Although LC-MS untargeted metabolomics continues to expand into exiting research domains, methodological issues have not been solved yet by the definition of unbiased, standardized and globally accepted analytical protocols. In the present study, the response of the plasma metabolome coverage to specific methodological choices of the sample preparation (two SPE technologies, three sample-to-solvent dilution ratios) and the LC-ESI-MS data acquisition steps of the metabolomics workflow (four RP columns, four elution solvent combinations, two solvent quality grades, postcolumn modification of the mobile phase) was investigated in a pragmatic and decision tree-like performance evaluation strategy. Quality control samples, reference plasma and human plasma from a real nutrimetabolomic study were used for intermethod comparisons. Uni- and multivariate data analysis approaches were independently applied. The highest method performance was obtained by combining the plasma hybrid extraction with the highest solvent proportion during sample preparation, the use of a RP column compatible with 100% aqueous polar phase (Atlantis T3), and the ESI enhancement by using UHPLC-MS purity grade methanol as both organic phase and postcolumn modifier. Results led to the following considerations: submit plasma samples to hybrid extraction for removal of interfering components to minimize the major sample-dependent matrix effects; avoid solvent evaporation following sample extraction if loss in detection and peak shape distortion of early eluting metabolites are not noticed; opt for a RP column for superior retention of highly polar species when analysis fractionation is not feasible; use ultrahigh quality grade solvents and "vintage" analytical tricks such as postcolumn organic enrichment of the mobile phase to enhance ESI efficiency. The final proposed protocol offers an example of how novel and old-fashioned analytical solutions may fruitfully cohabit in untargeted metabolomics protocols.
尽管液相色谱-质谱联用非靶向代谢组学不断拓展到新的研究领域,但尚无无偏倚、标准化且被全球认可的分析方案定义来解决方法学问题。在本研究中,采用务实且类似决策树的性能评估策略,研究了血浆代谢组覆盖范围对样品制备(两种固相萃取技术、三种样品与溶剂稀释比例)以及代谢组学工作流程中液相色谱-电喷雾电离质谱数据采集步骤(四根反相柱、四种洗脱溶剂组合、两种溶剂质量等级、流动相柱后改性)特定方法选择的响应。使用质量控制样品、参考血浆以及来自真实营养代谢组学研究的人血浆进行方法间比较。分别应用单变量和多变量数据分析方法。通过在样品制备过程中将血浆混合萃取与最高溶剂比例相结合、使用与100%水相极性相兼容的反相柱(Atlantis T3)以及通过使用超高效液相色谱-质谱纯度级甲醇作为有机相和柱后改性剂来增强电喷雾电离,可获得最高的方法性能。结果引发了以下思考:将血浆样品进行混合萃取以去除干扰成分,从而最大限度减少主要的样品依赖性基质效应;如果未注意到早期洗脱代谢物的检测损失和峰形畸变,则避免样品萃取后进行溶剂蒸发;当分析分馏不可行时,选择反相柱以更好地保留高极性物质;使用超高质量等级的溶剂以及“老式”分析技巧,如流动相柱后有机富集以提高电喷雾电离效率。最终提出的方案展示了新的和老式分析解决方案如何能在非靶向代谢组学方案中有效共存的一个例子。