Suppr超能文献

基于网络输出可控性的药物靶点识别方法

Network output controllability-based method for drug target identification.

作者信息

Wu Lin, Shen Yichao, Li Min, Wu Fang-Xiang

出版信息

IEEE Trans Nanobioscience. 2015 Mar;14(2):184-91. doi: 10.1109/TNB.2015.2391175. Epub 2015 Jan 26.

Abstract

Biomolecules do not perform their functions alone, but interactively with one another to form so called biomolecular networks. It is well known that a complex disease stems from the malfunctions of corresponding biomolecular networks. Therefore, one of important tasks is to identify drug targets from biomolecular networks. In this study, the drug target identification is formulated as a problem of finding steering nodes in biomolecular networks while the concept of network output controllability is applied to the problem of drug target identification. By applying control signals to these steering nodes, the biomolecular networks are expected to be transited from one state to another. A graph-theoretic algorithm has been proposed to find a minimum set of steering nodes in biomolecular networks which can be a potential set of drug targets. Application results of the method to real biomolecular networks show that identified potential drug targets are in agreement with existing research results. This indicates that the method can generate testable predictions and provide insights into experimental design of drug discovery.

摘要

生物分子并非单独发挥其功能,而是相互作用形成所谓的生物分子网络。众所周知,复杂疾病源于相应生物分子网络的功能失调。因此,一项重要任务是从生物分子网络中识别药物靶点。在本研究中,药物靶点识别被表述为在生物分子网络中寻找控制节点的问题,同时将网络输出可控性的概念应用于药物靶点识别问题。通过向这些控制节点施加控制信号,有望使生物分子网络从一种状态转变为另一种状态。已提出一种图论算法来寻找生物分子网络中的最小控制节点集,该集合可能是潜在的药物靶点集。该方法在真实生物分子网络上的应用结果表明,识别出的潜在药物靶点与现有研究结果一致。这表明该方法能够产生可测试的预测,并为药物发现的实验设计提供见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验