Suppr超能文献

一种用于寻找最优驱动节点以靶向控制复杂网络的新算法及其在药物靶点识别中的应用。

A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.

机构信息

Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.

Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of sciences, Shanghai, 200000, China.

出版信息

BMC Genomics. 2018 Jan 19;19(Suppl 1):924. doi: 10.1186/s12864-017-4332-z.

Abstract

BACKGROUND

The advances in target control of complex networks not only can offer new insights into the general control dynamics of complex systems, but also be useful for the practical application in systems biology, such as discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost, and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known drug-target genes).

RESULTS

Therefore, motivated by this fact, we pose and address a new and practical problem called as target control problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches. Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng .

CONCLUSIONS

In the previous theoretical research for the full control, there exists an observation and conclusion that the driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations. Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and especially many evidences on the practical strategic utility of TCOA to incorporate prior drug information into potential drug-target forecasts. Thus applicably, our method paves a novel and efficient way to identify the drug targets for leading the phenotype transitions of underlying biological networks.

摘要

背景

复杂网络的目标控制的进展不仅可以为复杂系统的一般控制动力学提供新的见解,而且对于系统生物学的实际应用也很有用,例如为疾病干预发现新的治疗靶点。在许多情况下,例如在生物网络中进行药物靶点识别,我们通常需要以最小的成本对节点子集(即与疾病相关的基因)进行目标控制,并且我们希望与特定的经过精心选择的网络节点(即先前已知的药物-靶标基因)一致的更多驱动节点。

结果

因此,受此事实的启发,我们提出并解决了一个新的实际问题,称为具有目标导向优化的目标控制问题(TCO):我们如何通过最小化总驱动节点数量并同时最大化驱动节点中的受约束节点数量来使用可选驱动节点控制系统的感兴趣变量(或目标)。在这里,我们设计了一种有效的算法(TCOA)来找到复杂网络中控制目标的可选驱动节点。我们将 TCOA 应用于几个真实网络,结果表明 TCOA 可以比现有控制焦点方法更准确地识别驱动节点。此外,我们还将 TCOA 应用于两个双分子专家精确网络。TCOA 的源代码可从 http://sysbio.sibcb.ac.cn/cb/chenlab/software.htmhttps://github.com/WilfongGuo/guoweifeng 免费获得。

结论

在全控制的前期理论研究中,存在一种观察和结论,即驱动节点往往是低度数节点。然而,对于生物网络的目标控制,我们有趣地发现驱动节点往往是高度数节点,这与生物实验观察更为一致。此外,我们的结果为我们提供了有关如何有效地控制复杂系统的新见解,尤其是 TCOA 将先前的药物信息纳入潜在药物靶标预测的实际策略效用的许多证据。因此,我们的方法为识别药物靶点以引领潜在生物网络的表型转变提供了一种新颖而有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d357/5780855/2ddd2efbec59/12864_2017_4332_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验