Suppr超能文献

基于结构网络控制原理的多模态多目标优化,以优化个体患者药物研发的个性化药物靶点。

Multimodal multiobjective optimization with structural network control principles to optimize personalized drug targets for drug discovery of individual patients.

作者信息

Liang Jing, Hu Zhuo, Bi Ying, Cheng Han, Guo Wei-Feng

机构信息

School of Electrical and Information Engineering, Zhengzhou University, No. 100, Science Avenue, Hightech District, Zhengzhou City 450001, Henan Province, China.

State Key Laboratory of Intelligent Agricultural Power Equipment, No. 39, Xiyuan Road, Jianxi District, Luoyang City 471039, Henan Province, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbaf007.

Abstract

Structural network control principles provided novel and efficient clues for the optimization of personalized drug targets (PDTs) related to state transitions of individual patients. However, most existing methods focus on one subnetwork or module as drug targets through the identification of the minimal set of driver nodes and ignore the state transition capabilities of other modules with different configurations of drug targets [i.e. multimodal drug targets (MDTs)] embedding the knowledge of previous drug targets (i.e. multiobjective optimization). Therefore, a novel multimodal multiobjective evolutionary optimization framework (called MMONCP) is proposed to optimize PDTs with network control principles. The key points of MMONCP are that a constrained multimodal multiobjective optimization problem is formed with discrete constraints on the decision space and multimodality characteristics, and a novel evolutionary algorithm denoted as CMMOEA-GLS-WSCD is designed by combining a global and local search strategy and a weighting-based special crowding distance strategy to balance the diversity of both objective and decision space. The experimental results on three cancer genomics data from The Cancer Genome Atlas indicate that MMONCP achieves a higher performance including algorithm convergence and diversity, the fraction of identified MDTs, and the area under the curve score than advanced algorithms. Additionally, MMONCP can detect the early state from the difference between the target activity and toxicity of MDTs and provide early treatment options for cancer treatment in precision medicine.

摘要

结构网络控制原理为优化与个体患者状态转变相关的个性化药物靶点(PDT)提供了新颖且高效的线索。然而,大多数现有方法通过识别最小驱动节点集将一个子网或模块作为药物靶点,而忽略了具有不同药物靶点配置的其他模块的状态转变能力[即多模态药物靶点(MDT)],这些配置嵌入了先前药物靶点的知识(即多目标优化)。因此,提出了一种新颖的多模态多目标进化优化框架(称为MMONCP),以利用网络控制原理优化PDT。MMONCP的关键点在于,通过对决策空间和多模态特征施加离散约束,形成了一个受约束的多模态多目标优化问题,并通过结合全局和局部搜索策略以及基于加权的特殊拥挤距离策略,设计了一种新颖的进化算法,记为CMMOEA - GLS - WSCD,以平衡目标空间和决策空间的多样性。来自癌症基因组图谱(The Cancer Genome Atlas)的三个癌症基因组学数据的实验结果表明,MMONCP在算法收敛性和多样性、识别出的MDT比例以及曲线下面积得分方面比先进算法具有更高的性能。此外,MMONCP可以从MDT的靶点活性和毒性之间的差异中检测早期状态,并为精准医学中的癌症治疗提供早期治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/627d/11747759/898bc12dcb5f/bbaf007f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验