Zhu Chuanmei, Ganguly Anindya, Baskin Tobias I, McClosky Daniel D, Anderson Charles T, Foster Cliff, Meunier Kristoffer A, Okamoto Ruth, Berg Howard, Dixit Ram
Biology Department (C.Z., A.G., R.D.) andDepartment of Mechanical Engineering (R.O.), Washington University, St. Louis, Missouri 63130;Biology Department, University of Massachusetts, Amherst, Massachusetts 01003 (T.I.B.);Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802 (D.D.M., C.T.A.);Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823 (C.F., K.A.M.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.B.).
Biology Department (C.Z., A.G., R.D.) andDepartment of Mechanical Engineering (R.O.), Washington University, St. Louis, Missouri 63130;Biology Department, University of Massachusetts, Amherst, Massachusetts 01003 (T.I.B.);Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802 (D.D.M., C.T.A.);Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823 (C.F., K.A.M.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.B.)
Plant Physiol. 2015 Mar;167(3):780-92. doi: 10.1104/pp.114.251462. Epub 2015 Feb 2.
The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 have an essentially unaltered composition and ultrastructure. A functional triple green fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and its abundance and motile density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent, indicating that FRA1 is not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pectin is greatly decreased in fra1-5, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our results, we propose that FRA1 contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules for secretion.
细胞壁由嵌入半纤维素和果胶基质中的纤维素微纤丝组成。纤维素微纤丝在质膜上合成,而基质多糖在高尔基体中合成并分泌。含有细胞壁成分的囊泡运输被认为依赖于肌动蛋白 - 肌球蛋白。在这里,我们通过对驱动蛋白 - 4家族成员脆性纤维1(FRA1)的研究,表明微管参与了这一过程。在fra1 - 5基因敲除突变体中,与野生型相比,花序茎的扩展速率减半,同时初生和次生细胞壁的厚度也减半。然而,fra1 - 5中的细胞壁组成和超微结构基本未改变。一种带有三重绿色荧光蛋白标签的功能性FRA1融合蛋白沿皮层微管进行性移动,其丰度和移动密度与生长速率相关。FRA1和纤维素合酶复合体的移动性是独立的,这表明FRA1不直接参与纤维素生物合成;然而,在fra1 - 5中,岩藻糖 - 炔标记的果胶分泌速率大大降低,并且该突变体的高尔基体中潴泡较少且囊泡增大。基于我们的结果,我们提出FRA1通过沿着皮层微管运输来自高尔基体的囊泡进行分泌,从而有助于细胞壁的产生。