Jozwiakowski Stanislaw K, Borazjani Gholami Farimah, Doherty Aidan J
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, United Kingdom.
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, United Kingdom
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E633-8. doi: 10.1073/pnas.1412982112. Epub 2015 Feb 2.
DNA replicases routinely stall at lesions encountered on the template strand, and translesion DNA synthesis (TLS) is used to rescue progression of stalled replisomes. This process requires specialized polymerases that perform translesion DNA synthesis. Although prokaryotes and eukaryotes possess canonical TLS polymerases (Y-family Pols) capable of traversing blocking DNA lesions, most archaea lack these enzymes. Here, we report that archaeal replicative primases (Pri S, primase small subunit) can also perform TLS. Archaeal Pri S can bypass common oxidative DNA lesions, such as 8-Oxo-2'-deoxyguanosines and UV light-induced DNA damage, faithfully bypassing cyclobutane pyrimidine dimers. Although it is well documented that archaeal replicases specifically arrest at deoxyuracils (dUs) due to recognition and binding to the lesions, a replication restart mechanism has not been identified. Here, we report that Pri S efficiently replicates past dUs, even in the presence of stalled replicase complexes, thus providing a mechanism for maintaining replication bypass of these DNA lesions. Together, these findings establish that some replicative primases, previously considered to be solely involved in priming replication, are also TLS proficient and therefore may play important roles in damage tolerance at replication forks.
DNA复制酶在模板链上遇到损伤时经常会停滞,而跨损伤DNA合成(TLS)则用于挽救停滞的复制体的进展。这个过程需要专门的聚合酶来进行跨损伤DNA合成。虽然原核生物和真核生物拥有能够跨越阻碍性DNA损伤的典型TLS聚合酶(Y家族聚合酶),但大多数古细菌缺乏这些酶。在这里,我们报告古细菌复制引发酶(Pri S,引发酶小亚基)也可以进行TLS。古细菌Pri S可以绕过常见的氧化性DNA损伤,如8-氧代-2'-脱氧鸟苷和紫外线诱导的DNA损伤,忠实地绕过环丁烷嘧啶二聚体。虽然有充分的文献记载,古细菌复制酶会由于对损伤的识别和结合而在脱氧尿嘧啶(dU)处特异性停滞,但尚未确定复制重新启动机制。在这里,我们报告Pri S即使在存在停滞的复制酶复合物的情况下也能有效地复制通过dU,从而提供了一种维持对这些DNA损伤的复制绕过的机制。总之,这些发现表明,一些以前被认为仅参与引发复制的复制引发酶也具有TLS能力,因此可能在复制叉处的损伤耐受性中发挥重要作用。