Dai Xinghong, Gong Danyang, Xiao Yuchen, Wu Ting-Ting, Sun Ren, Zhou Z Hong
Department of Microbiology, Immunology and Molecular Genetics, The California NanoSystems Institute, Bioengineering Program, and.
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E649-56. doi: 10.1073/pnas.1420317112. Epub 2015 Feb 2.
With just one eighth the size of the major capsid protein (MCP), the smallest capsid protein (SCP) of human tumor herpesviruses--Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV)--is vital to capsid assembly, yet its mechanism of action is unknown. Here, by cryoEM of KSHV at 6-Å resolution, we show that SCP forms a crown on each hexon and uses a kinked helix to cross-link neighboring MCP subunits. SCP-null mutation decreased viral titer by 1,000 times and impaired but did not fully abolish capsid assembly, indicating an important but nonessential role of SCP. By truncating the C-terminal half of SCP and performing cryoEM reconstruction, we demonstrate that SCP's N-terminal half is responsible for the observed structure and function whereas the C-terminal half is flexible and dispensable. Serial truncations further highlight the critical importance of the N-terminal 10 aa, and cryoEM reconstruction of the one with six residues truncated localizes the N terminus of SCP in the cryoEM density map and enables us to construct a pseudoatomic model of SCP. Fitting of this SCP model and a homology model for the MCP upper domain into the cryoEM map reveals that SCP binds MCP largely via hydrophobic interactions and the kinked helix of SCP bridges over neighboring MCPs to form noncovalent cross-links. These data support a mechanistic model that tumor herpesvirus SCP reinforces the capsid for genome packaging, thus acting as a cementing protein similar to those found in many bacteriophages.
人类肿瘤疱疹病毒——卡波西肉瘤相关疱疹病毒(KSHV)和爱泼斯坦-巴尔病毒(EBV)的最小衣壳蛋白(SCP),其大小仅为主要衣壳蛋白(MCP)的八分之一,对衣壳组装至关重要,但其作用机制尚不清楚。在这里,通过6埃分辨率的KSHV冷冻电镜技术,我们发现SCP在每个六邻体上形成一个冠状结构,并利用一个扭结螺旋交联相邻的MCP亚基。SCP基因敲除突变使病毒滴度降低了1000倍,损害了但并未完全消除衣壳组装,这表明SCP具有重要但非必需的作用。通过截短SCP的C端一半并进行冷冻电镜重建,我们证明SCP的N端一半负责观察到的结构和功能,而C端一半是灵活的且可有可无。系列截短进一步突出了N端10个氨基酸的至关重要性,对截短了6个残基的SCP进行冷冻电镜重建,将SCP的N端定位在冷冻电镜密度图中,并使我们能够构建SCP的伪原子模型。将这个SCP模型和MCP上结构域的同源模型拟合到冷冻电镜图中,发现SCP主要通过疏水相互作用与MCP结合,并且SCP的扭结螺旋在相邻的MCP之间架桥形成非共价交联。这些数据支持了一个机制模型,即肿瘤疱疹病毒SCP增强衣壳以进行基因组包装,因此其作用类似于许多噬菌体中的黏合蛋白。