Suppr超能文献

利用人工神经网络和细胞自动机对脆弱沿海地区的土地利用和土地覆盖变化进行建模。

Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata.

作者信息

Qiang Yi, Lam Nina S N

机构信息

Department of Environmental Sciences, Louisiana State University, 1273 Energy, Coast, and Environment Building, Baton Rouge, Louisiana, 70803, USA,

出版信息

Environ Monit Assess. 2015 Mar;187(3):57. doi: 10.1007/s10661-015-4298-8. Epub 2015 Feb 3.

Abstract

As one of the most vulnerable coasts in the continental USA, the Lower Mississippi River Basin (LMRB) region has endured numerous hazards over the past decades. The sustainability of this region has drawn great attention from the international, national, and local communities, wanting to understand how the region as a system develops under intense interplay between the natural and human factors. A major problem in this deltaic region is significant land loss over the years due to a combination of natural and human factors. The main scientific and management questions are what factors contribute to the land use land cover (LULC) changes in this region, can we model the changes, and how would the LULC look like in the future given the current factors? This study analyzed the LULC changes of the region between 1996 and 2006 by utilizing an artificial neural network (ANN) to derive the LULC change rules from 15 human and natural variables. The rules were then used to simulate future scenarios in a cellular automation model. A stochastic element was added in the model to represent factors that were not included in the current model. The analysis was conducted for two sub-regions in the study area for comparison. The results show that the derived ANN models could simulate the LULC changes with a high degree of accuracy (above 92 % on average). A total loss of 263 km(2) in wetlands from 2006 to 2016 was projected, whereas the trend of forest loss will cease. These scenarios provide useful information to decision makers for better planning and management of the region.

摘要

作为美国大陆最脆弱的海岸之一,密西西比河下游流域(LMRB)地区在过去几十年中遭受了众多灾害。该地区的可持续性引起了国际、国家和地方社区的高度关注,他们希望了解该地区作为一个系统在自然和人为因素的强烈相互作用下是如何发展的。这个三角洲地区的一个主要问题是多年来由于自然和人为因素的综合作用导致土地大量流失。主要的科学和管理问题是哪些因素导致了该地区土地利用土地覆盖(LULC)的变化,我们能否对这些变化进行建模,以及鉴于当前的因素,未来LULC会是什么样子?本研究利用人工神经网络(ANN)分析了1996年至2006年该地区的LULC变化,从15个人为和自然变量中推导LULC变化规则。然后将这些规则用于细胞自动机模型中模拟未来情景。在模型中加入了一个随机元素来表示当前模型未包括的因素。对研究区域内的两个子区域进行了分析以作比较。结果表明,所推导的人工神经网络模型能够高度准确地模拟LULC变化(平均准确率超过92%)。预计2006年至2016年湿地总面积将减少263平方公里,而森林流失趋势将停止。这些情景为决策者提供了有用信息,以便更好地规划和管理该地区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验