Suppr超能文献

关于机械刺激从头部表面到小鼠黄斑神经上皮的高频传递。

On the high frequency transfer of mechanical stimuli from the surface of the head to the macular neuroepithelium of the mouse.

作者信息

Jones Timothy A, Lee Choongheon, Gaines G Christopher, Grant J W Wally

机构信息

Dept. Special Education and Communication Disorders, 304c Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0738, USA,

出版信息

J Assoc Res Otolaryngol. 2015 Apr;16(2):189-204. doi: 10.1007/s10162-014-0501-9. Epub 2015 Feb 4.

Abstract

Vestibular macular sensors are activated by a shearing motion between the otoconial membrane and underlying receptor epithelium. Shearing motion and sensory activation in response to an externally induced head motion do not occur instantaneously. The mechanically reactive elastic and inertial properties of the intervening tissue introduce temporal constraints on the transfer of the stimulus to sensors. Treating the otoconial sensory apparatus as an overdamped second-order mechanical system, we measured the governing long time constant (Τ(L)) for stimulus transfer from the head surface to epithelium. This provided the basis to estimate the corresponding upper cutoff for the frequency response curve for mouse otoconial organs. A velocity step excitation was used as the forcing function. Hypothetically, the onset of the mechanical response to a step excitation follows an exponential rise having the form Vel(shear) = U(1-e(-t/TL)), where U is the applied shearing velocity step amplitude. The response time of the otoconial apparatus was estimated based on the activation threshold of macular neural responses to step stimuli having durations between 0.1 and 2.0 ms. Twenty adult C57BL/6 J mice were evaluated. Animals were anesthetized. The head was secured to a shaker platform using a non-invasive head clip or implanted skull screws. The shaker was driven to produce a theoretical forcing step velocity excitation at the otoconial organ. Vestibular sensory evoked potentials (VsEPs) were recorded to measure the threshold for macular neural activation. The duration of the applied step motion was reduced systematically from 2 to 0.1 ms and response threshold determined for each duration (nine durations). Hypothetically, the threshold of activation will increase according to the decrease in velocity transfer occurring at shorter step durations. The relationship between neural threshold and stimulus step duration was characterized. Activation threshold increased exponentially as velocity step duration decreased below 1.0 ms. The time constants associated with the exponential curve were Τ(L) = 0.50 ms for the head clip coupling and T(L) = 0.79 ms for skull screw preparation. These corresponded to upper -3 dB frequency cutoff points of approximately 318 and 201 Hz, respectively. T(L) ranged from 224 to 379 across individual animals using the head clip coupling. The findings were consistent with a second-order mass-spring mechanical system. Threshold data were also fitted to underdamped models post hoc. The underdamped fits suggested natural resonance frequencies on the order of 278 to 448 Hz as well as the idea that macular systems in mammals are less damped than generally acknowledged. Although estimated indirectly, it is argued that these time constants reflect largely if not entirely the mechanics of transfer to the sensory apparatus. The estimated governing time constant of 0.50 ms for composite data predicts high frequency cutoffs of at least 318 Hz for the intact otoconial apparatus of the mouse.

摘要

前庭黄斑传感器通过耳石膜与下方受体上皮之间的剪切运动被激活。响应外部诱导的头部运动而产生的剪切运动和感觉激活并非瞬间发生。中间组织的机械反应性弹性和惯性特性对刺激传递到传感器的过程施加了时间限制。将耳石感觉器官视为一个过阻尼二阶机械系统,我们测量了从头部表面到上皮的刺激传递的主导长时间常数(Τ(L))。这为估计小鼠耳石器官频率响应曲线的相应上限截止频率提供了基础。使用速度阶跃激励作为强迫函数。假设地,对阶跃激励的机械响应的起始遵循指数上升,形式为Vel(shear) = U(1 - e(-t/TL)),其中U是施加的剪切速度阶跃幅度。基于黄斑神经对持续时间在0.1至2.0毫秒之间的阶跃刺激的激活阈值,估计了耳石器官的响应时间。评估了20只成年C57BL/6 J小鼠。动物被麻醉。使用无创头夹或植入颅骨螺钉将头部固定在振动台上。驱动振动台以在耳石器官处产生理论上的强迫阶跃速度激励。记录前庭感觉诱发电位(VsEPs)以测量黄斑神经激活的阈值。将施加的阶跃运动的持续时间从2毫秒系统地减少到0.1毫秒,并为每个持续时间(九个持续时间)确定响应阈值。假设地,激活阈值将随着在较短阶跃持续时间内发生的速度传递减少而增加。表征神经阈值与刺激阶跃持续时间之间的关系。当速度阶跃持续时间降至1.0毫秒以下时,激活阈值呈指数增加。与指数曲线相关的时间常数对于头夹耦合为Τ(L) = 0.50毫秒,对于颅骨螺钉制备为T(L) = 0.79毫秒。这些分别对应于大约318和201赫兹的 -3 dB频率截止点上限。使用头夹耦合时,个体动物之间的T(L)范围为224至379。这些发现与二阶质量 - 弹簧机械系统一致。事后也将阈值数据拟合到欠阻尼模型。欠阻尼拟合表明自然共振频率在278至448赫兹范围内,以及哺乳动物黄斑系统的阻尼比普遍认为的要小的观点。尽管是间接估计的,但有人认为这些时间常数在很大程度上(如果不是完全)反映了传递到感觉器官的力学过程。对于综合数据估计的主导时间常数0.50毫秒预测小鼠完整耳石器官的高频截止至少为318赫兹。

相似文献

1
On the high frequency transfer of mechanical stimuli from the surface of the head to the macular neuroepithelium of the mouse.
J Assoc Res Otolaryngol. 2015 Apr;16(2):189-204. doi: 10.1007/s10162-014-0501-9. Epub 2015 Feb 4.
2
Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
Exp Brain Res. 2006 Nov;175(2):256-67. doi: 10.1007/s00221-006-0544-1. Epub 2006 Jun 8.
4
Otoliths - Accelerometer and seismometer; Implications in Vestibular Evoked Myogenic Potential (VEMP).
Hear Res. 2017 Sep;353:26-35. doi: 10.1016/j.heares.2017.07.012. Epub 2017 Jul 27.
8
Otolith-organ mechanics: lumped parameter model and dynamic response.
Aviat Space Environ Med. 1987 Oct;58(10):970-6.
9
Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats.
J Assoc Res Otolaryngol. 2022 Jun;23(3):435-453. doi: 10.1007/s10162-022-00839-1. Epub 2022 Apr 4.

引用本文的文献

3
TMC function, dysfunction, and restoration in mouse vestibular organs.
Front Neurol. 2024 Apr 4;15:1356614. doi: 10.3389/fneur.2024.1356614. eCollection 2024.
6
Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2.
Nat Commun. 2022 Oct 24;13(1):6330. doi: 10.1038/s41467-022-33819-3.
7
Effects of Several Therapeutic Agents on Mammalian Vestibular Function: Meclizine, Diazepam, and JNJ7777120.
J Assoc Res Otolaryngol. 2021 Oct;22(5):527-549. doi: 10.1007/s10162-021-00803-5. Epub 2021 May 19.
10
Multiscale modeling of mechanotransduction in the utricle.
J Neurophysiol. 2019 Jul 1;122(1):132-150. doi: 10.1152/jn.00068.2019. Epub 2019 Apr 17.

本文引用的文献

1
Experimental measurement of utricle system dynamic response to inertial stimulus.
J Assoc Res Otolaryngol. 2014 Aug;15(4):511-28. doi: 10.1007/s10162-014-0456-x. Epub 2014 May 21.
2
Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
Clin Exp Pharmacol Physiol. 2014 May;41(5):371-80. doi: 10.1111/1440-1681.12222.
3
Experimental measurement of utricle dynamic response.
J Vestib Res. 2012 Jan 1;22(2):57-68. doi: 10.3233/VES-2011-0431.
4
Nystagmus and oscillopsia.
Eur J Neurol. 2012 Jan;19(1):6-14. doi: 10.1111/j.1468-1331.2011.03503.x. Epub 2011 Sep 12.
5
The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs).
Hear Res. 2011 Oct;280(1-2):133-40. doi: 10.1016/j.heares.2011.05.005. Epub 2011 Jun 2.
6
Gravity receptor function in mice with graded otoconial deficiencies.
Hear Res. 2004 May;191(1-2):34-40. doi: 10.1016/j.heares.2004.01.008.
7
Vision and vertigo: some visual aspects of vestibular disorders.
J Neurol. 2004 Apr;251(4):381-7. doi: 10.1007/s00415-004-0410-7.
8
The mechanics of the labyrinth otoliths.
Acta Otolaryngol. 1951 Jun;38(3):262-73. doi: 10.3109/00016485009118384.
9
Stimulus and recording variables and their effects on mammalian vestibular evoked potentials.
J Neurosci Methods. 2002 Jul 30;118(1):23-31. doi: 10.1016/s0165-0270(02)00125-5.
10
Short latency compound action potentials from mammalian gravity receptor organs.
Hear Res. 1999 Oct;136(1-2):75-85. doi: 10.1016/s0378-5955(99)00110-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验