Suppr超能文献

基于CAD/CAM的高密度聚甲基丙烯酸甲酯和复合材料聚合物的可修复性。

Repairability of CAD/CAM high-density PMMA- and composite-based polymers.

作者信息

Wiegand Annette, Stucki Lukas, Hoffmann Robin, Attin Thomas, Stawarczyk Bogna

机构信息

Department of Preventive Dentistry, Periodontology and Cariology, University of Göttingen, Robert-Koch-Str. 40, D-37075, Göttingen, Germany.

Clinic for Preventive Dentistry, Periodontology and Cariology, University of Zurich, Zurich, Switzerland.

出版信息

Clin Oral Investig. 2015 Nov;19(8):2007-13. doi: 10.1007/s00784-015-1411-x. Epub 2015 Feb 5.

Abstract

OBJECTIVE

The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments.

METHODS

Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05).

RESULTS

Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed.

CONCLUSIONS

Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate-based composite.

CLINICAL RELEVANCE

Repair of PMMA- and composite-based polymers can be achieved by surface pretreatment followed by application of an adhesive and a conventional methacrylate-based composite.

摘要

目的

本研究旨在分析经不同表面预处理后,用传统甲基丙烯酸酯基复合材料修复的计算机辅助设计与制造(CAD/CAM)聚甲基丙烯酸甲酯(PMMA)基和复合基聚合物材料的剪切粘结强度。

方法

从六种不同的CAD/CAM聚合物材料(Ambarino高级型、artBloc Temp、CAD-Temp、Lava Ultimate、Telio CAD、Everest C-Temp)和一种传统的二甲基丙烯酸酯基复合材料(Filtek Supreme XTE,对照)制备48个样本,并通过热循环(5000次循环,5-55°C)进行老化处理。表面不做处理或通过机械粗化、氧化铝气磨或二氧化硅涂层/硅烷化进行预处理(每个亚组n = 12)。在将修复复合材料(Filtek Supreme XTE)粘结到表面之前,先用蚀刻冲洗型粘结剂(OptiBond FL)对表面进行进一步处理。经过进一步的热循环后,测试剪切粘结强度,并评估失效模式。通过双向和单向方差分析以及威布尔统计对剪切粘结强度进行统计学分析,通过卡方检验(p≤0.05)对失效模式进行分析。

结果

二氧化硅涂层/硅烷化处理后的剪切粘结强度最高>氧化铝气磨=机械粗化>未进行表面预处理。与修复预处理无关,对照组以及复合基的Everest C-Temp和Ambarino高级型的粘结强度值最高,而PMMA基材料(artBloc Temp、CAD-Temp和Telio CAD)的粘结强度值显著最低。对于所有材料,未进行任何表面预处理的修复仅导致粘结失效,而进行表面预处理时,这种情况大多会减少。

结论

CAD/CAM高密度聚合物的修复在应用粘结剂和复合材料之前需要进行表面预处理。然而,六种测试的CAD/CAM材料中有四种未达到传统二甲基丙烯酸酯基复合材料的修复粘结强度。

临床意义

PMMA基和复合基聚合物的修复可通过表面预处理,随后应用粘结剂和传统甲基丙烯酸酯基复合材料来实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验