Suppr超能文献

通过力谱和定向分子动力学对单域抗体支架与配体的相互作用进行表征。

Characterization of monobody scaffold interactions with ligand via force spectroscopy and steered molecular dynamics.

作者信息

Cheung Luthur Siu-Lun, Shea Daniel J, Nicholes Nathan, Date Amol, Ostermeier Marc, Konstantopoulos Konstantinos

机构信息

1] Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland [2] Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland [3] Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, Maryland.

Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland.

出版信息

Sci Rep. 2015 Feb 4;5:8247. doi: 10.1038/srep08247.

Abstract

Monobodies are antibody alternatives derived from fibronectin that are thermodynamically stable, small in size, and can be produced in bacterial systems. Monobodies have been engineered to bind a wide variety of target proteins with high affinity and specificity. Using alanine-scanning mutagenesis simulations, we identified two scaffold residues that are critical to the binding interaction between the monobody YS1 and its ligand, maltose-binding protein (MBP). Steered molecular dynamics (SMD) simulations predicted that the E47A and R33A mutations in the YS1 scaffold substantially destabilize the YS1-MBP interface by reducing the bond rupture force and the lifetime of single hydrogen bonds. SMD simulations further indicated that the R33A mutation weakens the hydrogen binding between all scaffold residues and MBP and not just between R33 and MBP. We validated the simulation data and characterized the effects of mutations on YS1-MBP binding by using single-molecule force spectroscopy and surface plasmon resonance. We propose that interfacial stability resulting from R33 of YS1 stacking with R344 of MBP synergistically stabilizes both its own bond and the interacting scaffold residues of YS1. Our integrated approach improves our understanding of the monobody scaffold interactions with a target, thus providing guidance for the improved engineering of monobodies.

摘要

单域抗体是源自纤连蛋白的抗体替代物,具有热力学稳定性,尺寸小,并且可以在细菌系统中产生。单域抗体经过工程改造,能够以高亲和力和特异性结合多种靶蛋白。通过丙氨酸扫描诱变模拟,我们确定了两个支架残基,它们对于单域抗体YS1与其配体麦芽糖结合蛋白(MBP)之间的结合相互作用至关重要。引导分子动力学(SMD)模拟预测,YS1支架中的E47A和R33A突变通过降低键断裂力和单个氢键的寿命,使YS1-MBP界面显著不稳定。SMD模拟进一步表明,R33A突变削弱了所有支架残基与MBP之间的氢键结合,而不仅仅是R33与MBP之间的氢键。我们通过单分子力谱和表面等离子体共振验证了模拟数据,并表征了突变对YS1-MBP结合的影响。我们提出,YS1的R33与MBP的R344堆积所产生的界面稳定性协同稳定了其自身的键以及YS1的相互作用支架残基。我们的综合方法增进了我们对单域抗体支架与靶标相互作用的理解,从而为改进单域抗体的工程设计提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/848f/4316159/583fbd12ac38/srep08247-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验