Trost Barry M, Bartlett Mark J
Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States.
Acc Chem Res. 2015 Mar 17;48(3):688-701. doi: 10.1021/ar500374r. Epub 2015 Feb 4.
The development of catalytic enantioselective transformations has been the focus of many research groups over the past half century and is of paramount importance to the pharmaceutical and agrochemical industries. Since the award of the Nobel Prize in 2001, the field of enantioselective transition metal catalysis has soared to new heights, with the development of more efficient catalysts and new catalytic transformations at increasing frequency. Furthermore, catalytic reactions that allow higher levels of redox- and step-economy are being developed. Thus, alternatives to asymmetric alkene dihydroxylation and the enantioselective reduction of α,β-unsaturated ketones can invoke more strategic C-C bond forming reactions, such as asymmetric aldol reactions of an aldehyde with α-hydroxyketone donors or enantioselective alkynylation of an aldehyde, respectively. To facilitate catalytic enantioselective addition reactions, including the aforementioned aldol and alkynylation reactions, our lab has developed the ProPhenol ligand. In this Account, we describe the development and application of the ProPhenol ligand for asymmetric additions of both carbon- and heteroatom-based nucleophiles to various electrophiles. The ProPhenol ligand spontaneously forms chiral dinuclear metal complexes when treated with an alkyl metal reagent, such as Et2Zn or Bu2Mg. The resulting complex contains both a Lewis acidic site to activate an electrophile and a Brønsted basic site to deprotonate a pronucleophile. Initially, our research focused on the use of Zn-ProPhenol complexes to facilitate the direct aldol reaction. Fine tuning of the reaction through ligand modification and the use of additives enabled the direct aldol reaction to proceed in high yields and stereoselectivities with a broad range of donor substrates, including acetophenones, methyl ynones, methyl vinyl ketone, acetone, α-hydroxy carbonyl compounds, and glycine Schiff bases. Additionally, an analogous magnesium ProPhenol complex was used to facilitate enantioselective diazoacetate aldol reactions with aryl, α,β-unsaturated, and aliphatic aldehydes. The utility of bimetallic ProPhenol catalysts was extended to asymmetric additions with a wide range of substrate combinations. Effective pronucleophiles include oxazolones, 2-furanone, nitroalkanes, pyrroles, 3-hydroxyoxindoles, alkynes, meso-1,3-diols, and dialkyl phosphine oxides. These substrates were found to be effective with a number of electrophiles, including aldehydes, imines, nitroalkenes, acyl silanes, vinyl benzoates, and α,β-unsaturated carbonyls. A truly diverse range of enantioenriched compounds have been prepared using the ProPhenol ligand, and the commercial availability of both ligand enantiomers makes it ideally suited for the synthesis of complex molecules. To date, enantioselective ProPhenol-catalyzed reactions have been used in the synthesis of more than 20 natural products.
在过去的半个世纪里,催化对映选择性转化的发展一直是许多研究团队关注的焦点,对制药和农用化学品行业至关重要。自2001年诺贝尔奖授予以来,对映选择性过渡金属催化领域已攀升至新高度,更高效的催化剂和新的催化转化越来越频繁地被开发出来。此外,能实现更高氧化还原经济性和步骤经济性的催化反应也在不断发展。因此,不对称烯烃双羟基化反应和α,β-不饱和酮的对映选择性还原反应的替代方法,可以引发更具策略性的碳-碳键形成反应,比如醛与α-羟基酮供体的不对称羟醛缩合反应或醛的对映选择性炔基化反应。为了促进催化对映选择性加成反应,包括上述的羟醛缩合和炔基化反应,我们实验室开发了ProPhenol配体。在本综述中,我们描述了ProPhenol配体在基于碳和杂原子的亲核试剂对各种亲电试剂的不对称加成反应中的开发和应用。当用烷基金属试剂(如二乙基锌或二丁基镁)处理时,ProPhenol配体可自发形成手性双核金属配合物。所得配合物既含有用于活化亲电试剂的路易斯酸性位点,又含有用于使亲核前体去质子化的布朗斯特碱性位点。最初,我们的研究集中在使用锌-ProPhenol配合物来促进直接羟醛缩合反应。通过配体修饰和添加剂的使用对反应进行微调,使得直接羟醛缩合反应能够以高收率和立体选择性进行,适用于多种供体底物,包括苯乙酮、甲基炔酮、甲基乙烯基酮、丙酮、α-羟基羰基化合物和甘氨酸席夫碱。此外,一种类似的镁ProPhenol配合物被用于促进与芳基、α,β-不饱和醛和脂肪醛的对映选择性重氮乙酸酯羟醛缩合反应。双金属ProPhenol催化剂的应用扩展到了多种底物组合的不对称加成反应。有效的亲核前体包括恶唑酮、2-呋喃酮、硝基烷烃、吡咯、3-羟基氧化吲哚、炔烃、内消旋-1,3-二醇和二烷基氧化膦。发现这些底物与许多亲电试剂有效,包括醛、亚胺、硝基烯烃、酰基硅烷、苯甲酸乙烯酯和α,β-不饱和羰基化合物。使用ProPhenol配体已经制备了一系列真正多样的对映体富集化合物,并且两种对映体配体都有商业供应,这使其非常适合用于复杂分子的合成。迄今为止,对映选择性ProPhenol催化的反应已用于20多种天然产物的合成。