Suppr超能文献

评估多组分视觉信号的潜在信息内容:一种机器学习方法。

Assessing the potential information content of multicomponent visual signals: a machine learning approach.

作者信息

Allen William L, Higham James P

机构信息

Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK

Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA.

出版信息

Proc Biol Sci. 2015 Mar 7;282(1802). doi: 10.1098/rspb.2014.2284.

Abstract

Careful investigation of the form of animal signals can offer novel insights into their function. Here, we deconstruct the face patterns of a tribe of primates, the guenons (Cercopithecini), and examine the information that is potentially available in the perceptual dimensions of their multicomponent displays. Using standardized colour-calibrated images of guenon faces, we measure variation in appearance both within and between species. Overall face pattern was quantified using the computer vision 'eigenface' technique, and eyebrow and nose-spot focal traits were described using computational image segmentation and shape analysis. Discriminant function analyses established whether these perceptual dimensions could be used to reliably classify species identity, individual identity, age and sex, and, if so, identify the dimensions that carry this information. Across the 12 species studied, we found that both overall face pattern and focal trait differences could be used to categorize species and individuals reliably, whereas correct classification of age category and sex was not possible. This pattern makes sense, as guenons often form mixed-species groups in which familiar conspecifics develop complex differentiated social relationships but where the presence of heterospecifics creates hybridization risk. Our approach should be broadly applicable to the investigation of visual signal function across the animal kingdom.

摘要

对动物信号形式进行细致研究能够为其功能提供全新的见解。在此,我们剖析了一类灵长目动物——长尾猴族(猕猴属)的面部图案,并探究了其多成分展示的感知维度中可能存在的信息。利用经过标准化色彩校准的长尾猴面部图像,我们测量了种内和种间的外观差异。整体面部图案通过计算机视觉“特征脸”技术进行量化,眉毛和鼻斑等重点特征则使用计算图像分割和形状分析来描述。判别函数分析确定了这些感知维度是否可用于可靠地分类物种身份、个体身份、年龄和性别,若可行,则找出携带此类信息的维度。在所研究的12个物种中,我们发现整体面部图案和重点特征差异均可用于可靠地对物种和个体进行分类,而对年龄类别和性别的正确分类则无法实现。这种模式是合理的,因为长尾猴经常形成混合物种群体,在其中熟悉的同种个体发展出复杂的差异化社会关系,但异种个体的存在会带来杂交风险。我们的方法应广泛适用于整个动物界视觉信号功能的研究。

相似文献

2
Character displacement of Cercopithecini primate visual signals.
Nat Commun. 2014 Jun 26;5:4266. doi: 10.1038/ncomms5266.
3
The structure of species discrimination signals across a primate radiation.
Elife. 2020 Jan 13;9:e47428. doi: 10.7554/eLife.47428.
4
Variation in guenon skulls (I): species divergence, ecological and genetic differences.
J Hum Evol. 2008 May;54(5):615-37. doi: 10.1016/j.jhevol.2007.09.022. Epub 2008 Jan 11.
5
Variation in guenon skulls (II): sexual dimorphism.
J Hum Evol. 2008 May;54(5):638-47. doi: 10.1016/j.jhevol.2007.09.023. Epub 2008 Jan 11.
6
X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini).
Mol Phylogenet Evol. 2005 Jul;36(1):58-66. doi: 10.1016/j.ympev.2005.01.009. Epub 2005 Feb 16.
7
The evolution of the Cercopithecini: a (post)modern synthesis.
Evol Anthropol. 2017 Nov;26(6):336-349. doi: 10.1002/evan.21567.
9
A mobile element-based evolutionary history of guenons (tribe Cercopithecini).
BMC Biol. 2007 Jan 31;5:5. doi: 10.1186/1741-7007-5-5.

引用本文的文献

1
Advancing non-human primate welfare: An automated facial recognition system for unrestrained cynomolgus monkeys.
PLoS One. 2025 Apr 8;20(4):e0319897. doi: 10.1371/journal.pone.0319897. eCollection 2025.
2
4
Simulated evolution of mating signal diversification in a primate radiation.
Proc Biol Sci. 2022 Jun 29;289(1977):20220734. doi: 10.1098/rspb.2022.0734. Epub 2022 Jun 22.
5
Using comprehensive machine-learning models to classify complex morphological characters.
Ecol Evol. 2021 Jun 27;11(15):10421-10431. doi: 10.1002/ece3.7845. eCollection 2021 Aug.
6
Perspectives on Individual Animal Identification from Biology and Computer Vision.
Integr Comp Biol. 2021 Oct 4;61(3):900-916. doi: 10.1093/icb/icab107.
7
Identifying female phenotypes that promote behavioral isolation in a sexually dimorphic species of fish .
Curr Zool. 2021 Apr;67(2):225-236. doi: 10.1093/cz/zoaa054. Epub 2020 Dec 14.
8
Domestication Phenotype Linked to Vocal Behavior in Marmoset Monkeys.
Curr Biol. 2020 Dec 21;30(24):5026-5032.e3. doi: 10.1016/j.cub.2020.09.049. Epub 2020 Oct 15.
9
Coevolution of cognitive abilities and identity signals in individual recognition systems.
Philos Trans R Soc Lond B Biol Sci. 2020 Jul 6;375(1802):20190467. doi: 10.1098/rstb.2019.0467. Epub 2020 May 18.
10
The structure of species discrimination signals across a primate radiation.
Elife. 2020 Jan 13;9:e47428. doi: 10.7554/eLife.47428.

本文引用的文献

2
Character displacement of Cercopithecini primate visual signals.
Nat Commun. 2014 Jun 26;5:4266. doi: 10.1038/ncomms5266.
5
Eigenfaces for recognition.
J Cogn Neurosci. 1991 Winter;3(1):71-86. doi: 10.1162/jocn.1991.3.1.71.
6
Ten unanswered questions in multimodal communication.
Behav Ecol Sociobiol. 2013;67(9):1523-1539. doi: 10.1007/s00265-013-1565-y. Epub 2013 Jun 21.
7
Analyzing visual signals as visual scenes.
Am J Primatol. 2013 Jul;75(7):664-82. doi: 10.1002/ajp.22129. Epub 2013 Feb 25.
8
Social knowledge and signals in primates.
Am J Primatol. 2013 Jul;75(7):683-94. doi: 10.1002/ajp.22103. Epub 2012 Dec 10.
10
Quantifying complex shapes: elliptical fourier analysis of octocoral sclerites.
Biol Bull. 2011 Jun;220(3):224-37. doi: 10.1086/BBLv220n3p224.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验