Suppr超能文献

眼跳适应作为灵活和通用运动学习的模型。

Saccade adaptation as a model of flexible and general motor learning.

机构信息

Department of Biology, City College of New York, New York, NY 10031, USA.

出版信息

Exp Eye Res. 2013 Sep;114:6-15. doi: 10.1016/j.exer.2013.04.001. Epub 2013 Apr 15.

Abstract

The rapid point-to-point movements of the eyes called saccades are the most commonly made movement by humans, yet differ from nearly every other type of motor output in that they are completed too quickly to be adjusted during their execution by visual feedback. Saccadic accuracy remains quite high over a lifetime despite inevitable changes to the physical structures controlling the eyes, indicating that the oculomotor system actively monitors and adjusts motor commands to achieve consistent behavioral production. Indeed, it seems that beyond the ability to compensate for slow, age-related bodily changes, saccades can be modified following traumatic injury or pathology that affects their production, or in response to more short-term systematic alterations to post-saccadic visual feedback in a laboratory setting. These forms of plasticity rely on the visual detection of accuracy errors by a unified set of mechanisms that support the process known as saccade adaptation. Saccade adaptation has been mostly studied as a phenomenon in its own right, outside of motor learning in general. Here, we highlight the commonalities between eye and arm movement adaptation by reviewing the literature across these fields wherever there are compelling overlapping theories or data. Recent exciting findings are challenging previous interpretations of the underlying mechanisms of saccade adaptation with the incorporation of concepts including prediction, reinforcement and contextual learning. We review the emerging ideas and evidence with particular emphasis on the important contributions made by Josh Wallman in this sphere over the past 15 years.

摘要

眼球的快速点对点运动称为扫视,是人类最常进行的运动,但与几乎所有其他类型的运动输出不同,由于扫视的执行速度太快,无法在执行过程中通过视觉反馈进行调整。尽管控制眼睛的物理结构不可避免地发生变化,但扫视的准确性在一生中仍然保持相当高的水平,这表明眼球运动系统主动监测和调整运动指令,以实现一致的行为产生。事实上,扫视似乎不仅能够补偿缓慢的、与年龄相关的身体变化,还可以在创伤或病理影响其产生时,或者在实验室环境中对扫视后视觉反馈进行更短期的系统改变时进行修改。这些形式的可塑性依赖于一套统一的机制来检测准确性错误,从而支持被称为扫视适应的过程。扫视适应在很大程度上已经作为一种独立的现象进行了研究,而不是一般的运动学习。在这里,我们通过回顾这些领域的文献,强调了眼睛和手臂运动适应之间的共同之处,只要有引人注目的重叠理论或数据。最近令人兴奋的发现挑战了之前对扫视适应潜在机制的解释,纳入了包括预测、强化和情境学习等概念。我们特别强调了约什·沃勒曼 (Josh Wallman) 在过去 15 年来在这一领域的重要贡献,回顾了新兴的观点和证据。

相似文献

1
Saccade adaptation as a model of flexible and general motor learning.
Exp Eye Res. 2013 Sep;114:6-15. doi: 10.1016/j.exer.2013.04.001. Epub 2013 Apr 15.
2
Saccade adaptation as a model of learning in voluntary movements.
Exp Brain Res. 2010 Jul;204(2):145-62. doi: 10.1007/s00221-010-2314-3. Epub 2010 Jun 11.
3
Saccadic adaptation to moving targets.
PLoS One. 2012;7(6):e39708. doi: 10.1371/journal.pone.0039708. Epub 2012 Jun 29.
4
Saccadic adaptation induced by a perceptual task.
J Vis. 2014 May 5;14(5):4. doi: 10.1167/14.5.4.
6
Oculomotor behavior can be adjusted on the basis of artificial feedback signals indicating externally caused errors.
PLoS One. 2024 May 20;19(5):e0302872. doi: 10.1371/journal.pone.0302872. eCollection 2024.
7
Saccadic gain modification: visual error drives motor adaptation.
J Neurophysiol. 1998 Nov;80(5):2405-16. doi: 10.1152/jn.1998.80.5.2405.
8
Postsaccadic eye position contributes to oculomotor error estimation in saccadic adaptation.
J Neurophysiol. 2019 Nov 1;122(5):1909-1917. doi: 10.1152/jn.00095.2019. Epub 2019 Sep 18.
10
Coupled Decision Processes Update and Maintain Saccadic Priors in a Dynamic Environment.
J Neurosci. 2017 Mar 29;37(13):3632-3645. doi: 10.1523/JNEUROSCI.3078-16.2017. Epub 2017 Feb 27.

引用本文的文献

2
Interaction of dynamic error signals in saccade adaptation.
J Neurophysiol. 2023 Mar 1;129(3):717-732. doi: 10.1152/jn.00419.2022. Epub 2023 Feb 15.
3
Contextual saccade adaptation induced by sequential saccades.
J Neurophysiol. 2022 Mar 1;127(3):746-755. doi: 10.1152/jn.00221.2021. Epub 2022 Feb 16.
4
Motor learning by selection in visual working memory.
Sci Rep. 2021 Apr 29;11(1):9331. doi: 10.1038/s41598-021-87572-6.
5
Saccadic adaptation in the presence of artificial central scotomas.
J Vis. 2021 Jan 4;21(1):8. doi: 10.1167/jov.21.1.8.
6
Perception of saccadic reaction time.
Sci Rep. 2020 Oct 14;10(1):17192. doi: 10.1038/s41598-020-72659-3.
7
Eye Movement Compensation and Spatial Updating in Visual Prosthetics: Mechanisms, Limitations and Future Directions.
Front Syst Neurosci. 2019 Feb 1;12:73. doi: 10.3389/fnsys.2018.00073. eCollection 2018.
8
Cortico-cerebellar network involved in saccade adaptation.
J Neurophysiol. 2018 Nov 1;120(5):2583-2594. doi: 10.1152/jn.00392.2018. Epub 2018 Sep 12.
9
Selective reward affects the rate of saccade adaptation.
Neuroscience. 2017 Jul 4;355:113-125. doi: 10.1016/j.neuroscience.2017.04.048. Epub 2017 May 10.
10
Target Displacements during Eye Blinks Trigger Automatic Recalibration of Gaze Direction.
Curr Biol. 2017 Feb 6;27(3):445-450. doi: 10.1016/j.cub.2016.12.029. Epub 2017 Jan 19.

本文引用的文献

1
End-point variability is not noise in saccade adaptation.
PLoS One. 2013;8(3):e59731. doi: 10.1371/journal.pone.0059731. Epub 2013 Mar 21.
2
Saccade adaptation goes for the goal.
J Vis. 2013 Mar 14;13(4):9. doi: 10.1167/13.4.9.
3
Credit assignment during movement reinforcement learning.
PLoS One. 2013;8(2):e55352. doi: 10.1371/journal.pone.0055352. Epub 2013 Feb 8.
4
Brain processing of visual information during fast eye movements maintains motor performance.
PLoS One. 2013;8(1):e54641. doi: 10.1371/journal.pone.0054641. Epub 2013 Jan 29.
5
Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone.
Exp Eye Res. 2013 Sep;114:77-88. doi: 10.1016/j.exer.2012.11.019. Epub 2013 Jan 3.
6
The relative importance of retinal error and prediction in saccadic adaptation.
J Neurophysiol. 2012 Jun;107(12):3342-8. doi: 10.1152/jn.00746.2011. Epub 2012 Mar 21.
7
Saccade adaptation improves in response to a gradually introduced stimulus perturbation.
Neurosci Lett. 2011 Aug 18;500(3):207-11. doi: 10.1016/j.neulet.2011.06.039. Epub 2011 Jun 29.
8
Eye position effects in oculomotor plasticity and visual localization.
J Neurosci. 2011 May 18;31(20):7341-8. doi: 10.1523/JNEUROSCI.6112-10.2011.
9
Reinforcing saccadic amplitude variability.
J Exp Anal Behav. 2011 Mar;95(2):149-62. doi: 10.1901/jeab.2011.95-149.
10
Modification of saccadic gain by reinforcement.
J Neurophysiol. 2011 Jul;106(1):219-32. doi: 10.1152/jn.01094.2009. Epub 2011 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验