Suppr超能文献

基于核协同表示的颅内 EEG 自动癫痫发作检测。

Kernel collaborative representation-based automatic seizure detection in intracranial EEG.

机构信息

School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China , Suzhou Institute of Shandong University, Suzhou 215123, P. R. China.

出版信息

Int J Neural Syst. 2015 Mar;25(2):1550003. doi: 10.1142/S0129065715500033. Epub 2014 Dec 17.

Abstract

Automatic seizure detection is of great significance in the monitoring and diagnosis of epilepsy. In this study, a novel method is proposed for automatic seizure detection in intracranial electroencephalogram (iEEG) recordings based on kernel collaborative representation (KCR). Firstly, the EEG recordings are divided into 4s epochs, and then wavelet decomposition with five scales is performed. After that, detail signals at scales 3, 4 and 5 are selected to be sparsely coded over the training sets using KCR. In KCR, l2-minimization replaces l1-minimization and the sparse coefficients are computed with regularized least square (RLS), and a kernel function is utilized to improve the separability between seizure and nonseizure signals. The reconstructed residuals of each EEG epoch associated with seizure and nonseizure training samples are compared and EEG epochs are categorized as the class that minimizes the reconstructed residual. At last, a multi-decision rule is applied to obtain the final detection decision. In total, 595 h of iEEG recordings from 21 patients with 87 seizures are employed to evaluate the system. The average sensitivity of 94.41%, specificity of 96.97%, and false detection rate of 0.26/h are achieved. The seizure detection system based on KCR yields both a high sensitivity and a low false detection rate for long-term EEG.

摘要

自动 seizure 检测在癫痫的监测和诊断中具有重要意义。在这项研究中,提出了一种基于核协同表示(KCR)的颅内脑电图(iEEG)记录中自动 seizure 检测的新方法。首先,将 EEG 记录分为 4s 个 epoch,然后进行五尺度的小波分解。之后,选择尺度 3、4 和 5 的细节信号,使用 KCR 在训练集中进行稀疏编码。在 KCR 中,用 l2-最小化代替 l1-最小化,用正则化最小二乘法(RLS)计算稀疏系数,并使用核函数提高 seizure 和非 seizure 信号之间的可分性。将与 seizure 和 nonseizure 训练样本相关的每个 EEG epoch 的重构残差进行比较,并将 EEG epoch 分类为使重构残差最小的类。最后,应用多决策规则得到最终的检测决策。总共使用 21 名患者的 595 小时 iEEG 记录和 87 次 seizure 来评估系统。系统的平均灵敏度为 94.41%,特异性为 96.97%,假阳性率为 0.26/h。基于 KCR 的 seizure 检测系统对长时间 EEG 具有高灵敏度和低假阳性率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验