Suppr超能文献

基于小波变换和 SVM 的长程颅内 EEG 自动癫痫发作检测

Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG.

机构信息

School of Information Science and Engineering, Shandong University, Jinan 250100, China.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2012 Nov;20(6):749-55. doi: 10.1109/TNSRE.2012.2206054. Epub 2012 Jul 31.

Abstract

Automatic seizure detection is of great significance for epilepsy long-term monitoring, diagnosis, and rehabilitation, and it is the key to closed-loop brain stimulation. This paper presents a novel wavelet-based automatic seizure detection method with high sensitivity. The proposed method first conducts wavelet decomposition of multi-channel intracranial EEG (iEEG) with five scales, and selects three frequency bands of them for subsequent processing. Effective features are extracted, such as relative energy, relative amplitude, coefficient of variation and fluctuation index at the selected scales, and then these features are sent into the support vector machine for training and classification. Afterwards a postprocessing is applied on the raw classification results to obtain more accurate and stable results. Postprocessing includes smoothing, multi-channel decision fusion and collar technique. Its performance is evaluated on a large dataset of 509 h from 21 epileptic patients. Experiments show that the proposed method could achieve a sensitivity of 94.46% and a specificity of 95.26% with a false detection rate of 0.58/h for seizure detection in long-term iEEG.

摘要

自动 seizure 检测对于癫痫的长期监测、诊断和康复具有重要意义,是闭环脑刺激的关键。本文提出了一种基于小波的新型自动 seizure 检测方法,具有较高的灵敏度。该方法首先对多通道颅内 EEG(iEEG)进行五尺度小波分解,然后选择其中三个频率带进行后续处理。提取有效特征,如所选尺度的相对能量、相对幅度、变异系数和波动指数,然后将这些特征送入支持向量机进行训练和分类。之后对原始分类结果进行后处理,以获得更准确和稳定的结果。后处理包括平滑、多通道决策融合和套圈技术。该方法在 21 名癫痫患者的 509 小时大数据集上进行了性能评估。实验表明,该方法在长时 iEEG 的 seizure 检测中可以达到 94.46%的灵敏度和 95.26%的特异性,假阳性率为 0.58/h。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验