Suppr超能文献

AtGRDP2 的过表达,一种新型的甘氨酸丰富结构域蛋白,加速植物生长并提高了对环境胁迫的耐受性。

Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance.

机构信息

División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC San Luis Potosí, México.

Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosi, Mexico.

出版信息

Front Plant Sci. 2015 Jan 20;5:782. doi: 10.3389/fpls.2014.00782. eCollection 2014.

Abstract

Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif (RRM). AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8, and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

摘要

富含甘氨酸的蛋白质已在包括植物、哺乳动物、真菌和细菌在内的多种生物体中被报道。植物甘氨酸丰富蛋白基因表现出发育和组织特异性的表达模式。在此,我们利用拟南芥缺失和敲低突变体以及拟南芥和生菜过表达系,对 AtGRDP2 基因进行了特征描述。AtGRDP2 编码一种短的富含甘氨酸的结构域蛋白,含有 DUF1399 结构域和一个假定的 RNA 识别基序(RRM)。AtGRDP2 转录本主要在拟南芥花器官中表达,其在拟南芥 Atgrdp2 突变体和 35S::AtGRDP2 过表达系中的失调会导致发育改变。35S::AtGRDP2 过表达系比 WT 生长得更快,而 Atgrdp2 突变体的生长和发育则延迟。过表达系积累了更高水平的吲哚-3-乙酸,并且花发育和生长素信号转导的 ARF6、ARF8 和 miR167 调节剂的表达模式发生改变。在盐胁迫条件下,35S::AtGRDP2 过表达系表现出更高的耐盐性和应激标记基因的表达增加。同样,过表达 AtGRDP2 基因的转基因生菜植物表现出生长速度加快和早花时间。我们的数据揭示了 AtGRDP2 在拟南芥发育和应激反应中的重要作用,并表明 AtGRDP2 与生长素信号转导之间存在联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e53/4299439/1c40c94e4c6c/fpls-05-00782-g0001.jpg

相似文献

1
Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance.
Front Plant Sci. 2015 Jan 20;5:782. doi: 10.3389/fpls.2014.00782. eCollection 2014.
2
An interactome analysis reveals that Arabidopsis thaliana GRDP2 interacts with proteins involved in post-transcriptional processes.
Cell Stress Chaperones. 2021 Mar;27(2):165-176. doi: 10.1007/s12192-022-01261-5. Epub 2022 Feb 16.
5
Plant fertility defects induced by the enhanced expression of microRNA167.
Cell Res. 2006 May;16(5):457-65. doi: 10.1038/sj.cr.7310057.
7
Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis.
Plant Cell Rep. 2013 Aug;32(8):1289-98. doi: 10.1007/s00299-013-1443-0. Epub 2013 Apr 13.
10
Modification of AtGRDP1 gene expression affects silique and seed development in Arabidopsis thaliana.
Biochem Biophys Res Commun. 2017 Apr 29;486(2):252-256. doi: 10.1016/j.bbrc.2017.03.015. Epub 2017 Mar 8.

引用本文的文献

1
Predicting and testing a gene network regulating seed germination in .
PeerJ. 2025 Jul 7;13:e19599. doi: 10.7717/peerj.19599. eCollection 2025.
2
The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response.
Plants (Basel). 2025 May 7;14(9):1402. doi: 10.3390/plants14091402.
5
The Maize ZmBES1/BZR1-9 Transcription Factor Accelerates Flowering in Transgenic and Rice.
Plants (Basel). 2023 Aug 19;12(16):2995. doi: 10.3390/plants12162995.
6
Using landscape genomics to assess local adaptation and genomic vulnerability of a perennial herb (Vitaceae) in subtropical China.
Front Genet. 2023 Apr 18;14:1150704. doi: 10.3389/fgene.2023.1150704. eCollection 2023.
7
8
Glycine-rich RNA-binding cofactor RZ1AL is associated with tomato ripening and development.
Hortic Res. 2022 Aug 2;9:uhac134. doi: 10.1093/hr/uhac134. eCollection 2022.
9
RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response.
Front Plant Sci. 2022 Jun 15;13:882596. doi: 10.3389/fpls.2022.882596. eCollection 2022.
10
Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Growth and Its Salt Tolerance.
Front Plant Sci. 2022 Apr 6;13:866063. doi: 10.3389/fpls.2022.866063. eCollection 2022.

本文引用的文献

1
Modulation of auxin content in Arabidopsis confers improved drought stress resistance.
Plant Physiol Biochem. 2014 Sep;82:209-17. doi: 10.1016/j.plaphy.2014.06.008. Epub 2014 Jun 20.
2
miRNAs in the crosstalk between phytohormone signalling pathways.
J Exp Bot. 2014 Apr;65(6):1425-38. doi: 10.1093/jxb/eru002. Epub 2014 Feb 12.
5
Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice.
Plant Mol Biol. 2013 Nov;83(4-5):475-88. doi: 10.1007/s11103-013-0103-7. Epub 2013 Jul 12.
6
Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis.
Plant Cell Rep. 2013 Aug;32(8):1289-98. doi: 10.1007/s00299-013-1443-0. Epub 2013 Apr 13.
7
Coordination of flower maturation by a regulatory circuit of three microRNAs.
PLoS Genet. 2013 Mar;9(3):e1003374. doi: 10.1371/journal.pgen.1003374. Epub 2013 Mar 28.
9
Plant RNA chaperones in stress response.
Trends Plant Sci. 2013 Feb;18(2):100-6. doi: 10.1016/j.tplants.2012.08.004. Epub 2012 Sep 1.
10
Fruit development in Arabidopsis.
Arabidopsis Book. 2006;4:e0075. doi: 10.1199/tab.0075. Epub 2006 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验