Suppr超能文献

利用双分子荧光互补技术研究活细胞中多种锌转运蛋白的异源二聚化、亚细胞定位改变及功能

Heterodimerization, altered subcellular localization, and function of multiple zinc transporters in viable cells using bimolecular fluorescence complementation.

作者信息

Golan Yarden, Berman Bluma, Assaraf Yehuda G

机构信息

From the Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.

From the Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel

出版信息

J Biol Chem. 2015 Apr 3;290(14):9050-63. doi: 10.1074/jbc.M114.617332. Epub 2015 Feb 5.

Abstract

Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions.

摘要

锌在众多关键生理功能中发挥着至关重要的作用。锌转运体(ZnTs)介导锌从细胞内细胞器流出并进行区室化;因此,ZnTs在锌稳态中起着核心作用。我们最近利用双分子荧光互补(BiFC)技术展示了多种正常和突变型ZnTs的原位二聚化及其功能。受这些发现的启发,我们在此利用这种灵敏的BiFC技术揭示了活细胞中多种ZnTs的异源二聚化、亚细胞定位改变及其功能。我们发现ZnT1、-2、-3和-4在不同的细胞内区室形成稳定的异源二聚体,其中一些与它们的同源二聚体定位完全不同。具体而言,与ZnT1同源二聚体定位于质膜(PM)不同,ZnT1-ZnT3异源二聚体定位于细胞内囊泡。此外,与ZnT1异源二聚化后,锌转运体ZnT2和ZnT4令人惊讶地定位于质膜,而不是它们囊泡状的同源二聚体定位。我们进一步证明了与短暂性新生儿锌缺乏相关的G87R-ZnT2突变在异源二聚化时对ZnT1、ZnT3和ZnT4产生的有害影响。通过双BiFC-锌喹啉测定法评估了各种ZnTs的功能。我们还采用了一种新的ZnT cDNA转染竞争试验,以确认异源二聚体形成的驱动力是ZnTs的核心结构,而不是BiFC标签。这些发现揭示了一个具有不同亚细胞定位和功能的ZnTs同源和异源二聚体的新网络,从而突出了它们在生理和病理条件下锌稳态中可能发挥的作用。

相似文献

2
In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation.
J Biol Chem. 2014 Mar 14;289(11):7275-92. doi: 10.1074/jbc.M113.533786. Epub 2014 Jan 22.
3
Molecular Basis of Transient Neonatal Zinc Deficiency: NOVEL ZnT2 MUTATIONS DISRUPTING ZINC BINDING AND PERMEATION.
J Biol Chem. 2016 Jun 24;291(26):13546-59. doi: 10.1074/jbc.M116.732693. Epub 2016 May 2.
4
Transmembrane 163 (TMEM163) protein interacts with specific mammalian SLC30 zinc efflux transporter family members.
Biochem Biophys Rep. 2022 Oct 1;32:101362. doi: 10.1016/j.bbrep.2022.101362. eCollection 2022 Dec.
5
Abundant expression of zinc transporters in Bergman glia of mouse cerebellum.
Brain Res Bull. 2005 Jan 15;64(5):441-8. doi: 10.1016/j.brainresbull.2004.10.001.
7
The level of the zinc homeostasis regulating proteins in the brain of rats subjected to olfactory bulbectomy model of depression.
Prog Neuropsychopharmacol Biol Psychiatry. 2017 Jan 4;72:36-48. doi: 10.1016/j.pnpbp.2016.08.009. Epub 2016 Aug 24.
8
Expression profiles of zinc transporters in rodent placental models.
Toxicol Lett. 2004 Dec 1;154(1-2):45-53. doi: 10.1016/j.toxlet.2004.07.001.
9
Consequences of zinc deficiency on zinc localization, taurine transport, and zinc transporters in rat retina.
Microsc Res Tech. 2022 Oct;85(10):3382-3390. doi: 10.1002/jemt.24193. Epub 2022 Jul 14.

引用本文的文献

3
Localization of the MTP4 transporter to trans-Golgi network in pollen tubes of Arabidopsis thaliana.
J Plant Res. 2024 Sep;137(5):939-950. doi: 10.1007/s10265-024-01559-8. Epub 2024 Jul 28.
5
Transmembrane 163 (TMEM163) protein interacts with specific mammalian SLC30 zinc efflux transporter family members.
Biochem Biophys Rep. 2022 Oct 1;32:101362. doi: 10.1016/j.bbrep.2022.101362. eCollection 2022 Dec.
6
Lysosomal inhibition sensitizes TMEM16A-expressing cancer cells to chemotherapy.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2100670119. doi: 10.1073/pnas.2100670119. Epub 2022 Mar 14.
7
Zinc Signaling in the Mammary Gland: For Better and for Worse.
Biomedicines. 2021 Sep 12;9(9):1204. doi: 10.3390/biomedicines9091204.
8
The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction.
Biomedicines. 2021 Apr 29;9(5):489. doi: 10.3390/biomedicines9050489.
9
Transmembrane 163 (TMEM163) Protein: A New Member of the Zinc Efflux Transporter Family.
Biomedicines. 2021 Feb 21;9(2):220. doi: 10.3390/biomedicines9020220.
10
Zinc transporters and their functional integration in mammalian cells.
J Biol Chem. 2021 Jan-Jun;296:100320. doi: 10.1016/j.jbc.2021.100320. Epub 2021 Jan 22.

本文引用的文献

1
Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity.
J Cell Sci. 2014 Jul 15;127(Pt 14):3094-103. doi: 10.1242/jcs.145318. Epub 2014 May 14.
2
Current understanding of ZIP and ZnT zinc transporters in human health and diseases.
Cell Mol Life Sci. 2014 Sep;71(17):3281-95. doi: 10.1007/s00018-014-1617-0. Epub 2014 Apr 8.
3
Transient neonatal zinc deficiency due to a new autosomal dominant mutation in gene SLC30A2 (ZnT-2).
Pediatr Dermatol. 2014 Mar-Apr;31(2):251-2. doi: 10.1111/pde.12257. Epub 2014 Jan 23.
4
In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation.
J Biol Chem. 2014 Mar 14;289(11):7275-92. doi: 10.1074/jbc.M113.533786. Epub 2014 Jan 22.
7
The SLC39 family of zinc transporters.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):612-9. doi: 10.1016/j.mam.2012.05.011.
9
Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2140-5. doi: 10.1073/pnas.1215455110. Epub 2013 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验