Golan Yarden, Berman Bluma, Assaraf Yehuda G
From the Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
From the Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
J Biol Chem. 2015 Apr 3;290(14):9050-63. doi: 10.1074/jbc.M114.617332. Epub 2015 Feb 5.
Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions.
锌在众多关键生理功能中发挥着至关重要的作用。锌转运体(ZnTs)介导锌从细胞内细胞器流出并进行区室化;因此,ZnTs在锌稳态中起着核心作用。我们最近利用双分子荧光互补(BiFC)技术展示了多种正常和突变型ZnTs的原位二聚化及其功能。受这些发现的启发,我们在此利用这种灵敏的BiFC技术揭示了活细胞中多种ZnTs的异源二聚化、亚细胞定位改变及其功能。我们发现ZnT1、-2、-3和-4在不同的细胞内区室形成稳定的异源二聚体,其中一些与它们的同源二聚体定位完全不同。具体而言,与ZnT1同源二聚体定位于质膜(PM)不同,ZnT1-ZnT3异源二聚体定位于细胞内囊泡。此外,与ZnT1异源二聚化后,锌转运体ZnT2和ZnT4令人惊讶地定位于质膜,而不是它们囊泡状的同源二聚体定位。我们进一步证明了与短暂性新生儿锌缺乏相关的G87R-ZnT2突变在异源二聚化时对ZnT1、ZnT3和ZnT4产生的有害影响。通过双BiFC-锌喹啉测定法评估了各种ZnTs的功能。我们还采用了一种新的ZnT cDNA转染竞争试验,以确认异源二聚体形成的驱动力是ZnTs的核心结构,而不是BiFC标签。这些发现揭示了一个具有不同亚细胞定位和功能的ZnTs同源和异源二聚体的新网络,从而突出了它们在生理和病理条件下锌稳态中可能发挥的作用。