Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany.
Plant Cell. 2012 Oct;24(10):4187-204. doi: 10.1105/tpc.112.101964. Epub 2012 Oct 19.
3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy sulfate donor for sulfation reactions. Plants produce some PAPS in the cytosol, but it is predominantly produced in plastids. Accordingly, PAPS has to be provided by plastids to serve as a substrate for sulfotransferase reactions in the cytosol and the Golgi apparatus. We present several lines of evidence that the recently described Arabidopsis thaliana thylakoid ADP/ATP carrier TAAC transports PAPS across the plastid envelope and thus fulfills an additional function of high physiological relevance. Transport studies using the recombinant protein revealed that it favors PAPS, 3'-phosphoadenosine 5'-phosphate, and ATP as substrates; thus, we named it PAPST1. The protein could be detected both in the plastid envelope membrane and in thylakoids, and it is present in plastids of autotrophic and heterotrophic tissues. TAAC/PAPST1 belongs to the mitochondrial carrier family in contrast with the known animal PAPS transporters, which are members of the nucleotide-sugar transporter family. The expression of the PAPST1 gene is regulated by the same MYB transcription factors also regulating the biosynthesis of sulfated secondary metabolites, glucosinolates. Molecular and physiological analyses of papst1 mutant plants indicate that PAPST1 is involved in several aspects of sulfur metabolism, including the biosynthesis of thiols, glucosinolates, and phytosulfokines.
3'-磷酸腺苷 5'-磷酸硫酸酯(PAPS)是硫酸化反应的高能硫酸供体。植物在细胞质中产生一些 PAPS,但主要在质体中产生。因此,PAPS 必须由质体提供,以作为细胞质和高尔基体中磺基转移酶反应的底物。我们提供了一些证据表明,最近描述的拟南芥类囊体 ADP/ATP 载体 TAAC 将 PAPS 跨质体膜运输,从而履行了具有高度生理相关性的额外功能。使用重组蛋白进行的运输研究表明,它有利于 PAPS、3'-磷酸腺苷 5'-磷酸和 ATP 作为底物;因此,我们将其命名为 PAPST1。该蛋白既可以在质体膜中检测到,也可以在类囊体中检测到,并且存在于自养和异养组织的质体中。TAAC/PAPST1 属于线粒体载体家族,与已知的动物 PAPS 转运蛋白不同,后者是核苷酸-糖转运蛋白家族的成员。PAPST1 基因的表达受相同的 MYB 转录因子调控,这些转录因子也调节硫酸化次生代谢物、硫代葡萄糖苷的生物合成。papst1 突变体植物的分子和生理分析表明,PAPST1 参与了硫代谢的几个方面,包括硫醇、硫代葡萄糖苷和植物磺基肽的生物合成。