Suppr超能文献

使用高重复率光纤激光源的飞秒激光骨消融

Femtosecond laser bone ablation with a high repetition rate fiber laser source.

作者信息

Mortensen Luke J, Alt Clemens, Turcotte Raphaël, Masek Marissa, Liu Tzu-Ming, Côté Daniel C, Xu Chris, Intini Giuseppe, Lin Charles P

机构信息

Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA ; Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Biomed Opt Express. 2014 Dec 5;6(1):32-42. doi: 10.1364/BOE.6.000032. eCollection 2015 Jan 1.

Abstract

Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process.

摘要

飞秒激光脉冲可用于通过等离子体介导的烧蚀对材料进行非常精确的切割,包括从亚细胞器到大面积骨骼的生物样本。通常需要使用千赫兹再生放大器来获得烧蚀所需的脉冲能量。这项工作研究了一种用于骨组织近视频速率成像和烧蚀的5兆赫兹紧凑型光纤激光器。在优化烧蚀效率并降低自发荧光后,该系统被用于骨再生的体内研究。图像引导下骨缺损的创建以及对缺损处细胞损伤反应的纵向评估为骨再生过程提供了深入了解。

相似文献

1
Femtosecond laser bone ablation with a high repetition rate fiber laser source.
Biomed Opt Express. 2014 Dec 5;6(1):32-42. doi: 10.1364/BOE.6.000032. eCollection 2015 Jan 1.
2
High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source.
Opt Lett. 2019 May 1;44(9):2193-2196. doi: 10.1364/OL.44.002193.
3
A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery.
Biomed Opt Express. 2014 Jun 2;5(7):2023-36. doi: 10.1364/BOE.5.002023. eCollection 2014 Jul 1.
4
Optical fibers for endoscopic high-power Er:YAG laserosteotomy.
J Biomed Opt. 2021 Sep;26(9). doi: 10.1117/1.JBO.26.9.095002.
6
Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses.
Opt Express. 2018 Oct 1;26(20):26411-26421. doi: 10.1364/OE.26.026411.
7
Frequency-doubled femtosecond Er-doped fiber laser for two-photon excited fluorescence imaging.
Biomed Opt Express. 2020 Jul 20;11(8):4431-4442. doi: 10.1364/BOE.396878. eCollection 2020 Aug 1.
8
Two-photon microscopy using fiber-based nanosecond excitation.
Biomed Opt Express. 2016 Jun 1;7(7):2432-40. doi: 10.1364/BOE.7.002432. eCollection 2016 Jul 1.
9
Fiber-amplifier-pumped, 1-MHz, 1-µJ, 2.1-µm, femtosecond OPA with chirped-pulse DFG front-end.
Opt Express. 2019 Mar 18;27(6):9144-9154. doi: 10.1364/OE.27.009144.

引用本文的文献

1
High-repetition-rate ultrafast fiber lasers enabled by BtzBiI: a novel bismuth-based perovskite nonlinear optical material.
Nanophotonics. 2025 Jun 30;14(15):2587-2603. doi: 10.1515/nanoph-2025-0087. eCollection 2025 Aug.
2
Parameter optimization of femtosecond laser pulses for implant cavity preparation.
Biomed Opt Express. 2025 Jan 7;16(2):460-472. doi: 10.1364/BOE.546367. eCollection 2025 Feb 1.
3
X-ray generation by fs-laser processing of biological material.
Biomed Opt Express. 2023 Oct 9;14(11):5656-5669. doi: 10.1364/BOE.499170. eCollection 2023 Nov 1.
4
Image-seq: spatially resolved single-cell sequencing guided by in situ and in vivo imaging.
Nat Methods. 2022 Dec;19(12):1622-1633. doi: 10.1038/s41592-022-01673-2. Epub 2022 Nov 24.
5
Laser Micromachining of Bone as a Tool for Studying Bone Marrow Biology.
Methods Mol Biol. 2023;2567:163-180. doi: 10.1007/978-1-0716-2679-5_11.
6
Preliminary study on the osseointegration effects of contactless automated implant cavity preparation via femtosecond laser ablation.
Biomed Opt Express. 2021 Dec 3;13(1):82-92. doi: 10.1364/BOE.446602. eCollection 2022 Jan 1.
8
Spatial frequency metrics for analysis of microscopic images of musculoskeletal tissues.
Connect Tissue Res. 2021 Jan;62(1):4-14. doi: 10.1080/03008207.2020.1828381. Epub 2020 Oct 7.
9
Imaging hair cells through laser-ablated cochlear bone.
Biomed Opt Express. 2019 Oct 31;10(11):5974-5988. doi: 10.1364/BOE.10.005974. eCollection 2019 Nov 1.
10
Bitter taste receptor T2R7 and umami taste receptor subunit T1R1 are expressed highly in Vimentin-negative taste bud cells in chickens.
Biochem Biophys Res Commun. 2019 Apr 2;511(2):280-286. doi: 10.1016/j.bbrc.2019.02.021. Epub 2019 Feb 16.

本文引用的文献

2
three-photon microscopy of subcortical structures within an intact mouse brain.
Nat Photonics. 2013 Mar 1;7(3):205-9. doi: 10.1038/nphoton.2012.336.
4
All-optical osteotomy to create windows for transcranial imaging in mice.
Opt Express. 2013 Oct 7;21(20):23160-8. doi: 10.1364/OE.21.023160.
5
Ultrafast laser ablation and machining large-size structures on porcine bone.
J Biomed Opt. 2013 Jul;18(7):70504. doi: 10.1117/1.JBO.18.7.070504.
7
Femtosecond laser ablation of bovine cortical bone.
J Biomed Opt. 2012 Dec;17(12):125005. doi: 10.1117/1.JBO.17.12.125005.
8
Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone.
Lasers Surg Med. 2012 Dec;44(10):805-14. doi: 10.1002/lsm.22098. Epub 2012 Nov 26.
9
Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy.
Biomed Opt Express. 2012 Sep 1;3(9):1972-7. doi: 10.1364/BOE.3.001972. Epub 2012 Jul 31.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验