Baratin E, Sugavaneswaran L, Umapathy K, Ioana C, Krishnan S
E.N.S. de l'Energie, l'Eau et l'Environnement, Laboratoire de Traitement du signal, de l'image et d'automatique, France.
Department of Electrical and Computer Engineering, Ryerson University, Canada.
Gait Posture. 2015 Feb;41(2):634-9. doi: 10.1016/j.gaitpost.2015.01.012. Epub 2015 Jan 20.
Studies conducted by the World Health Organization (WHO) indicate that over one billion suffer from neurological disorders worldwide, and lack of efficient diagnosis procedures affects their therapeutic interventions. Characterizing certain pathologies of motor control for facilitating their diagnosis can be useful in quantitatively monitoring disease progression and efficient treatment planning. As a suitable directive, we introduce a wavelet-based scheme for effective characterization of gait associated with certain neurological disorders. In addition, since the data were recorded from a dynamic process, this work also investigates the need for gait signal re-sampling prior to identification of signal markers in the presence of pathologies. To benefit automated discrimination of gait data, certain characteristic features are extracted from the wavelet-transformed signals. The performance of the proposed approach was evaluated using a database consisting of 15 Parkinson's disease (PD), 20 Huntington's disease (HD), 13 Amyotrophic lateral sclerosis (ALS) and 16 healthy control subjects, and an average classification accuracy of 85% is achieved using an unbiased cross-validation strategy. The obtained results demonstrate the potential of the proposed methodology for computer-aided diagnosis and automatic characterization of certain neurological disorders.
世界卫生组织(WHO)开展的研究表明,全球有超过10亿人患有神经疾病,而缺乏有效的诊断程序影响了对他们的治疗干预。对运动控制的某些病理特征进行表征以促进其诊断,有助于定量监测疾病进展和制定有效的治疗方案。作为一种合适的指导方法,我们引入了一种基于小波的方案,用于有效表征与某些神经疾病相关的步态。此外,由于数据是从动态过程中记录的,这项工作还研究了在存在病理情况时,在识别信号标记之前对步态信号进行重新采样的必要性。为了便于对步态数据进行自动判别,从小波变换后的信号中提取了某些特征。使用一个包含15名帕金森病(PD)患者、20名亨廷顿舞蹈症(HD)患者、13名肌萎缩侧索硬化症(ALS)患者和16名健康对照者的数据库对所提方法的性能进行了评估,采用无偏交叉验证策略实现了85%的平均分类准确率。所得结果证明了所提方法在某些神经疾病的计算机辅助诊断和自动表征方面的潜力。