Suppr超能文献

使用自适应神经模糊推理系统对神经退行性疾病患者的步态模式进行分类

Classification of Gait Patterns in Patients with Neurodegenerative Disease Using Adaptive Neuro-Fuzzy Inference System.

作者信息

Ye Qiang, Xia Yi, Yao Zhiming

机构信息

Department of Sport and Health Science, Nanjing Sport Institute, Nanjing 210014, China.

School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China.

出版信息

Comput Math Methods Med. 2018 Sep 30;2018:9831252. doi: 10.1155/2018/9831252. eCollection 2018.

Abstract

A common feature that is typical of the patients with neurodegenerative (ND) disease is the impairment of motor function, which can interrupt the pathway from cerebrum to the muscle and thus cause movement disorders. For patients with amyotrophic lateral sclerosis disease (ALS), the impairment is caused by the loss of motor neurons. While for patients with Parkinson's disease (PD) and Huntington's disease (HD), it is related to the basal ganglia dysfunction. Previously studies have demonstrated the usage of gait analysis in characterizing the ND patients for the purpose of disease management. However, most studies focus on extracting characteristic features that can differentiate ND gait from normal gait. Few studies have demonstrated the feasibility of modelling the nonlinear gait dynamics in characterizing the ND gait. Therefore, in this study, a novel approach based on an adaptive neuro-fuzzy inference system (ANFIS) is presented for identification of the gait of patients with ND disease. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. Gait dynamics such as stride intervals, stance intervals, and double support intervals were used as the input variables to the model. The particle swarm optimization (PSO) algorithm was utilized to learn the parameters of the ANFIS model. The performance of the system was evaluated in terms of sensitivity, specificity, and accuracy using the leave-one-out cross-validation method. The competitive classification results on a dataset of 13 ALS patients, 15 PD patients, 20 HD patients, and 16 healthy control subjects indicated the effectiveness of our approach in representing the gait characteristics of ND patients.

摘要

神经退行性疾病(ND)患者的一个常见典型特征是运动功能受损,这会中断从大脑到肌肉的通路,从而导致运动障碍。对于肌萎缩侧索硬化症(ALS)患者,这种损伤是由运动神经元的丧失引起的。而对于帕金森病(PD)和亨廷顿舞蹈病(HD)患者,运动功能受损则与基底神经节功能障碍有关。此前的研究已经证明了步态分析在对ND患者进行疾病管理特征描述方面的应用。然而,大多数研究都集中在提取能够区分ND步态与正常步态的特征。很少有研究证明对ND步态进行非线性步态动力学建模的可行性。因此,在本研究中,提出了一种基于自适应神经模糊推理系统(ANFIS)的新方法来识别ND疾病患者的步态。所提出的ANFIS模型结合了神经网络的自适应能力和模糊逻辑定性方法。将步幅间隔、站立间隔和双支撑间隔等步态动力学作为模型的输入变量。利用粒子群优化(PSO)算法来学习ANFIS模型的参数。使用留一法交叉验证方法,从灵敏度、特异性和准确性方面评估了该系统的性能。在一个包含13名ALS患者、15名PD患者、20名HD患者和16名健康对照受试者的数据集上的竞争性分类结果表明,我们的方法在表征ND患者的步态特征方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c21/6186329/162b0f5a7ead/CMMM2018-9831252.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验