Eelderink-Chen Zheng, Olmedo Maria, Bosman Jasper, Merrow Martha
Department of Molecular Chronobiology, Groningen, The Netherlands.
Institute of Medical Psychology, Munich, Germany.
Methods Enzymol. 2015;551:73-93. doi: 10.1016/bs.mie.2014.10.028. Epub 2014 Dec 26.
Three properties are most often attributed to the circadian clock: a ca. 24-h free-running rhythm, temperature compensation of the circadian rhythm, and its entrainment to zeitgeber cycles. Relatively few experiments, however, are performed under entrainment conditions. Rather, most chronobiology protocols concern constant conditions. We have turned this paradigm around and used entrainment to study the circadian clock in organisms where a free-running rhythm is weak or lacking. We describe two examples therein: Caenorhabditis elegans and Saccharomyces cerevisiae. By probing the system with zeitgeber cycles that have various structures and amplitudes, we can demonstrate the establishment of systematic entrained phase angles in these organisms. We conclude that entrainment can be utilized to discover hitherto unknown circadian clocks and we discuss the implications of using entrainment more broadly, even in model systems that show robust free-running rhythms.
大约24小时的自主节律、生物钟节律的温度补偿以及其对授时因子周期的同步化。然而,在同步化条件下进行的实验相对较少。相反,大多数生物钟学实验方案关注的是恒定条件。我们扭转了这种模式,利用同步化来研究那些自主节律微弱或不存在的生物体中的生物钟。我们在文中描述了两个例子:秀丽隐杆线虫和酿酒酵母。通过用具有不同结构和振幅的授时因子周期探测系统,我们可以证明在这些生物体中建立了系统的同步化相位角。我们得出结论,同步化可用于发现迄今未知的生物钟,并且我们讨论了更广泛地使用同步化的意义,即使是在显示出强大自主节律的模型系统中。