Kessler David C, Hoff Peter D, Dunson David B
University of North Carolina, Chapel Hill, USA.
University of Washington, Seattle, USA.
J R Stat Soc Series B Stat Methodol. 2015 Jan 1;77(1):35-58. doi: 10.1111/rssb.12059.
Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables.
非参数贝叶斯推断的先验规范涉及量化关于高维(通常是无穷维)参数的先验知识这一艰巨任务。统计学家不太可能对这样一个参数的所有方面都有明智的看法,但会对该参数的泛函有实际信息,比如总体均值或方差。本文提出了一个非参数贝叶斯推断的新框架,其中可能无穷维参数的先验分布被分解为两部分:有限个泛函上的信息性先验,以及给定泛函时参数的非参数条件先验。这样的先验可以很容易地从常用的标准非参数先验分布构建出来,并继承它们所基于的标准先验的广泛支撑。此外,在这些信息性先验下的后验近似通常可以通过对标准非参数先验分布的现有马尔可夫链近似算法进行微小调整来实现。我们在使用狄利克雷过程混合模型的多元密度估计以及高维稀疏列联表建模的背景下说明了这种先验的使用。