Suppr超能文献

具有可解释先验的诊断试验研究的贝叶斯双变量荟萃分析。

Bayesian bivariate meta-analysis of diagnostic test studies with interpretable priors.

作者信息

Guo Jingyi, Riebler Andrea, Rue Håvard

机构信息

Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, PO 7491, Norway.

出版信息

Stat Med. 2017 Aug 30;36(19):3039-3058. doi: 10.1002/sim.7313. Epub 2017 May 5.

Abstract

In a bivariate meta-analysis, the number of diagnostic studies involved is often very low so that frequentist methods may result in problems. Using Bayesian inference is particularly attractive as informative priors that add a small amount of information can stabilise the analysis without overwhelming the data. However, Bayesian analysis is often computationally demanding and the selection of the prior for the covariance matrix of the bivariate structure is crucial with little data. The integrated nested Laplace approximations method provides an efficient solution to the computational issues by avoiding any sampling, but the important question of priors remain. We explore the penalised complexity (PC) prior framework for specifying informative priors for the variance parameters and the correlation parameter. PC priors facilitate model interpretation and hyperparameter specification as expert knowledge can be incorporated intuitively. We conduct a simulation study to compare the properties and behaviour of differently defined PC priors to currently used priors in the field. The simulation study shows that the PC prior seems beneficial for the variance parameters. The use of PC priors for the correlation parameter results in more precise estimates when specified in a sensible neighbourhood around the truth. To investigate the usage of PC priors in practice, we reanalyse a meta-analysis using the telomerase marker for the diagnosis of bladder cancer and compare the results with those obtained by other commonly used modelling approaches. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

在双变量荟萃分析中,所涉及的诊断性研究数量通常非常少,以至于频率论方法可能会导致问题。使用贝叶斯推断特别有吸引力,因为添加少量信息的信息性先验可以稳定分析而不会压过数据。然而,贝叶斯分析通常在计算上要求很高,并且在数据很少的情况下,为双变量结构的协方差矩阵选择先验至关重要。集成嵌套拉普拉斯近似方法通过避免任何抽样为计算问题提供了一种有效的解决方案,但先验的重要问题仍然存在。我们探索惩罚复杂度(PC)先验框架,以指定方差参数和相关参数的信息性先验。PC先验有助于模型解释和超参数指定,因为专家知识可以直观地纳入。我们进行了一项模拟研究,以比较不同定义的PC先验与该领域当前使用的先验的性质和行为。模拟研究表明,PC先验对方差参数似乎有益。当在真值周围的合理邻域中指定时,将PC先验用于相关参数会导致更精确的估计。为了研究PC先验在实际中的使用,我们重新分析了一项使用端粒酶标记物诊断膀胱癌的荟萃分析,并将结果与其他常用建模方法获得的结果进行比较。版权所有© 2017约翰威立父子有限公司。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验