Suppr超能文献

急性肾移植排斥反应的生物学机制分析:mRNA和微小RNA表达谱的整合

Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles.

作者信息

Huang Shi-Ming, Zhao Xia, Zhao Xue-Mei, Wang Xiao-Ying, Li Shan-Shan, Zhu Yu-Hui

机构信息

Department of Urology, Qianfoshan Hospital Affiliated to Shandong Univercity Jinan 250014, China.

Department of Nephrology, Qianfoshan Hospital Affiliated to Shandong Univercity Jinan 250014, China.

出版信息

Int J Clin Exp Med. 2014 Dec 15;7(12):5170-80. eCollection 2014.

Abstract

OBJECTIVES

Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent.

METHODS

MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone.

RESULTS

A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection.

CONCLUSIONS

We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection.

摘要

目的

肾移植是大多数终末期肾病患者的首选治疗方法,然而,急性肾移植排斥反应仍是导致受体肾损伤的主要危险因素。为了改善急性排斥反应的早期诊断和治疗,对其分子机制的研究迫在眉睫。

方法

从ArrayExpress数据库下载急性肾移植排斥反应及功能良好的移植肾的微小RNA(miRNA)表达谱和信使核糖核酸(mRNA)表达谱,用于鉴定差异表达(DE)的miRNA和DE mRNA。通过结合五种算法预测DE miRNA的靶标。通过重叠DE mRNA和DE miRNA的靶标,获得共同基因。在差异共表达基因与连接(DCGL)软件包中,通过差异共表达谱(DCp)和差异共表达富集(DCe)方法鉴定差异共表达基因(DCG)。然后,对DCG进行共表达网络构建和聚类分析。对DCG进行功能富集分析。

结果

共预测了1270个miRNA靶标,获得698个DE mRNA。在重叠miRNA靶标和DE mRNA时,获得了59个共同基因。基于调控影响因子(RIF),我们获得了103个DCG和5个转录因子(TF),然后构建了miRNA靶标和DE mRNA的调控网络。通过对共表达网络进行聚类,获得了5个模块。其中,模块1的度数最高,模块2的DCG和共同基因数量最多。TF CEBPB和几个共同基因,如RXRA、BASP1和AKAP10,被映射到共表达网络上。C1R在网络中的度数最高。这些基因可能与人类急性肾移植排斥反应有关。

结论

我们对急性肾移植排斥反应中DE mRNA和DE miRNA的整合进行了生物学分析,展示了基因表达模式,并筛选出可能与急性肾移植排斥反应相关的基因和TF。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验