Suppr超能文献

通过依赖 pH 的羧基 (13)C NMR 弛豫来确定蛋白质中酸性侧链的位置特异性质子化动力学。

Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.

机构信息

Department of Biophysical Chemistry and ‡Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden.

出版信息

J Am Chem Soc. 2015 Mar 4;137(8):3093-101. doi: 10.1021/ja513205s. Epub 2015 Feb 20.

Abstract

Proton-transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton-transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton-exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on (13)C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3) × 10(6) s(-1) and kon in the range (0.6-300) × 10(9) M(-1) s(-1), which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between log kon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state.

摘要

质子转移动力学在许多生化过程中起着关键作用,例如跨膜质子泵和酶催化。绝大多数酶利用酸碱催化和质子转移机制,其中质子转移的速率可能是整个反应的限速步骤。然而,只有少数情况下能够实现对蛋白质中单个侧链羧基的质子交换动力学的测量,这些情况通常涉及在反应网络建模的背景下对突变蛋白进行比较分析。在这里,我们描述了一种基于 (13)C NMR 弛豫测量随 pH 值变化来确定羧基侧链特定位置的质子化和去质子化速率常数(kon 和 koff,分别)的方法。我们使用广泛研究的模型系统——蛋白 G 的 B1 结构域来验证该方法,我们测量了 koff 在 (0.1-3) × 10(6) s(-1)的范围内,kon 在 (0.6-300) × 10(9) M(-1) s(-1)的范围内,这与通过化学位移滴定确定的先前结果非常吻合。我们的结果进一步揭示了 log kon 和 pKa 之间的线性自由能关系,该关系提供了关于质子化反应自由能景观的信息,表明这些参数中残基的可变性主要来自于蛋白质环境对去质子化状态的电荷稳定化程度。我们发现 koff 或 kon 值极端的侧链羧基参与氢键,从而为观察到的质子化或去质子化状态的稳定提供了一种机制解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验