Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China.
Nanoscale. 2015 Mar 7;7(9):4114-23. doi: 10.1039/c4nr06929c.
The role of localized surface plasmon resonance (LSPR) in UV-Vis light irradiated Au/TiO2 photocatalysis systems has been investigated, and it is demonstrated experimentally for the first time that both pros and cons of LSPR exist simultaneously for this photocatalytic reaction. We have proved that when operating under mixed UV and green light irradiation, the LSPR injected hot electrons (from the Au nanoparticles to TiO2 under green light irradiation) may surmount the Schottky barrier (SB) formed between the Au nanoparticles and TiO2, and flow back into the TiO2. As a result, these electrons may compensate for and even surpass those transferred from TiO2 to the Au nanoparticles, thus accelerating the recombination of UV excited electron-hole pairs in TiO2. This is the negative effect of LSPR. On the other hand, more hot electrons existing on the surface of the Au nanoparticles due to LSPR would favor the photocatalytic reaction, which accompanied by the negative effect dominates the overall photocatalytic performance. The presented results reveal the multi-faceted essence of LSPR in Au/TiO2 structures, and is instructive for the application of metal-semiconductor composites in photocatalysis. Moreover, it is confirmed that the extent to which the above pros and cons of LSPR dominate the overall photocatalytic reaction depends on the intensity ratio of visible to UV light.
已经研究了局域表面等离子体共振(LSPR)在紫外-可见光辐照下的 Au/TiO2 光催化体系中的作用,实验首次证明,对于这种光催化反应,LSPR 同时存在正反两方面的作用。我们已经证明,在混合紫外光和绿光辐照下运行时,LSPR 注入的热电子(在绿光辐照下从 Au 纳米粒子到 TiO2)可以克服 Au 纳米粒子和 TiO2 之间形成的肖特基势垒(SB),并回流到 TiO2 中。结果,这些电子可能会补偿甚至超过从 TiO2 转移到 Au 纳米粒子的电子,从而加速 TiO2 中紫外激发的电子-空穴对的复合。这是 LSPR 的负面影响。另一方面,由于 LSPR,更多的热电子存在于 Au 纳米粒子的表面上,这有利于光催化反应,其负面影响伴随着主导整体光催化性能。所呈现的结果揭示了 Au/TiO2 结构中 LSPR 的多方面本质,这对金属-半导体复合材料在光催化中的应用具有指导意义。此外,已经证实,LSPR 的上述正反两方面作用在多大程度上主导整体光催化反应取决于可见光与紫外光的强度比。