Suppr超能文献

预测英国川崎病患者对静脉注射免疫球蛋白的耐药性。

Predicting IVIG resistance in UK Kawasaki disease.

作者信息

Davies Sarah, Sutton Natalina, Blackstock Sarah, Gormley Stuart, Hoggart Clive J, Levin Michael, Herberg Jethro A

机构信息

Department of Paediatric Infectious Diseases, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK.

Department of Paediatric Infectious Diseases, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK Section of Paediatrics, Imperial College London, London, UK.

出版信息

Arch Dis Child. 2015 Apr;100(4):366-8. doi: 10.1136/archdischild-2014-307397. Epub 2015 Feb 10.

Abstract

The Kobayashi score (KS) predicts intravenous immunoglobulin (IVIG) resistance in Japanese children with Kawasaki disease (KD) and has been used to select patients for early corticosteroid treatment. We tested the ability of the KS to predict IVIG resistance and coronary artery abnormalities (CAA) in 78 children treated for KD in our UK centre. 19/59 children were IVIG non-responsive. This was not predicted by a high KS (11/19 IVIG non-responders, compared with 26/40 responders, had a score ≥4; p=0.77). CAA were not predicted by KS (12/20 children with CAA vs 25/39 with normal echo had a score ≥4; p=0.78). Low albumin and haemoglobin, and high C-reactive protein were significantly associated with CAA. The KS does not predict IVIG resistance or CAA in our population. This highlights the need for biomarkers to identify children at increased risk of CAA, and to select patients for anti-inflammatory treatment in addition to IVIG.

摘要

小林评分(KS)可预测日本川崎病(KD)患儿对静脉注射免疫球蛋白(IVIG)的抵抗情况,并已用于选择早期接受皮质类固醇治疗的患者。我们在英国中心测试了KS预测78例接受KD治疗儿童的IVIG抵抗和冠状动脉异常(CAA)的能力。19/59例儿童对IVIG无反应。高KS并不能预测这一情况(19例IVIG无反应者中有11例,40例反应者中有26例评分≥4;p=0.77)。KS不能预测CAA(20例有CAA的儿童中有12例,39例超声正常的儿童中有25例评分≥4;p=0.78)。低白蛋白和血红蛋白以及高C反应蛋白与CAA显著相关。在我们的人群中,KS不能预测IVIG抵抗或CAA。这凸显了需要生物标志物来识别CAA风险增加的儿童,并选择除IVIG外还需接受抗炎治疗的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验