Yoshida Tomoko, Niimi Satoshi, Yamamoto Muneaki, Nomoto Toyokazu, Yagi Shinya
EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan.
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
J Colloid Interface Sci. 2015 Jun 1;447:278-81. doi: 10.1016/j.jcis.2014.12.097. Epub 2015 Jan 9.
The thickness-controlled TiO2 thin films are fabricated by the pulsed laser deposition (PLD) method. These samples function as photocatalysts under UV light irradiation and the reaction rate depends on the TiO2 thickness, i.e., with an increase of thickness, it increases to the maximum, followed by decreasing to be constant. Such variation of the reaction rate is fundamentally explained by the competitive production and annihilation processes of photogenerated electrons and holes in TiO2 films, and the optimum TiO2 thickness is estimated to be ca. 10nm. We also tried to dope nitrogen into the effective depth region (ca. 10nm) of TiO2 by an ion implantation technique. The nitrogen doped TiO2 enhanced photocatalytic activity under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1⩽x⩽2) species. In the valence band XPS spectrum of the high active sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substituting nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts.
通过脉冲激光沉积(PLD)法制备了厚度可控的二氧化钛薄膜。这些样品在紫外光照射下作为光催化剂,反应速率取决于二氧化钛的厚度,即随着厚度增加,反应速率先增加到最大值,然后下降并趋于恒定。这种反应速率的变化从根本上可以用光生电子和空穴在二氧化钛薄膜中的竞争产生和湮灭过程来解释,最佳的二氧化钛厚度估计约为10nm。我们还尝试通过离子注入技术将氮掺杂到二氧化钛的有效深度区域(约10nm)。氮掺杂的二氧化钛在可见光照射下增强了光催化活性。X射线吸收近边结构(XANES)和X射线光电子能谱(XPS)分析表明氮存在两种化学状态,一种是光催化活性的N取代O位点,另一种是无活性的氮氧化物(1⩽x⩽2)物种。在高活性样品的价带XPS光谱中,在二氧化钛价带边缘上方观察到了额外的电子态。该电子态可能源于取代的氮,并导致带隙变窄,即二氧化钛光催化剂的可见光响应。