Suppr超能文献

基于全脑容积和弥散张量成像的阿尔茨海默病进展预测的自动分类。

Automated Classification to Predict the Progression of Alzheimer's Disease Using Whole-Brain Volumetry and DTI.

机构信息

Department of Biomedical Engineering/u-HARC, Inje University, Gimhae, Republic of Korea.

Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea. ; Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.

出版信息

Psychiatry Investig. 2015 Jan;12(1):92-102. doi: 10.4306/pi.2015.12.1.92. Epub 2015 Jan 12.

Abstract

OBJECTIVE

This study proposes an automated diagnostic method to classify patients with Alzheimer's disease (AD) of degenerative etiology using magnetic resonance imaging (MRI) markers.

METHODS

Twenty-seven patients with subjective memory impairment (SMI), 18 patients with mild cognitive impairment (MCI), and 27 patients with AD participated. MRI protocols included three dimensional brain structural imaging and diffusion tensor imaging to assess the cortical thickness, subcortical volume and white matter integrity. Recursive feature elimination based on support vector machine (SVM) was conducted to determine the most relevant features for classifying abnormal regions and imaging parameters, and then a factor analysis for the top-ranked factors was performed. Subjects were classified using nonlinear SVM.

RESULTS

Medial temporal regions in AD patients were dominantly detected with cortical thinning and volume atrophy compared with SMI and MCI patients. Damage to white matter integrity was also accredited with decreased fractional anisotropy and increased mean diffusivity (MD) across the three groups. The microscopic damage in the subcortical gray matter was reflected in increased MD. Classification accuracy between pairs of groups (SMI vs. MCI, MCI vs. AD, SMI vs. AD) and among all three groups were 84.4% (±13.8), 86.9% (±10.5), 96.3% (±4.6), and 70.5% (±11.5), respectively.

CONCLUSION

This proposed method may be a potential tool to diagnose AD pathology with the current clinical criteria.

摘要

目的

本研究提出了一种使用磁共振成像(MRI)标志物自动诊断退行性病因阿尔茨海默病(AD)患者的方法。

方法

共纳入 27 例有主观记忆障碍(SMI)的患者、18 例轻度认知障碍(MCI)患者和 27 例 AD 患者。MRI 方案包括三维脑结构成像和弥散张量成像,以评估皮质厚度、皮质下体积和白质完整性。基于支持向量机(SVM)的递归特征消除用于确定用于分类异常区域和成像参数的最相关特征,然后对排名最高的因素进行因子分析。使用非线性 SVM 对受试者进行分类。

结果

与 SMI 和 MCI 患者相比,AD 患者的内侧颞叶区域主要表现为皮质变薄和体积萎缩。白质完整性的损伤也归因于三组患者的各向异性分数降低和平均弥散度(MD)增加。皮质下灰质的微观损伤反映在 MD 的增加上。两两比较组间(SMI 与 MCI、MCI 与 AD、SMI 与 AD)和三组间的分类准确率分别为 84.4%(±13.8)、86.9%(±10.5)、96.3%(±4.6)和 70.5%(±11.5)。

结论

该方法可能是一种潜在的工具,可根据目前的临床标准诊断 AD 病理学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5e6/4310927/b9ec2fcfdbd1/pi-12-92-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验